

Teneto Docs

[image: _images/gennet_example1.png]

Teneto

[image: Documentation Status]
 [http://teneto.readthedocs.io/en/latest/?badge=latest][image: PyPI version]
 [https://badge.fury.io/py/teneto][image: Build Status]
 [https://travis-ci.org/wiheto/teneto][image: Codacy Badge]
 [https://www.codacy.com/app/wiheto/teneto?utm_source=github.com&utm_medium=referral&utm_content=wiheto/teneto&utm_campaign=Badge_Grade][image: Coverage Status]
 [https://coveralls.io/github/wiheto/teneto?branch=master][image: DOI]
 [https://zenodo.org/badge/latestdoi/61498436]Temporal network tools.

What is the package

Package includes various tools for analyzing temporal network data. Temporal network measures, temporal network generation, derivation of time-varying/dynamic connectivities, plotting functions.

Some extra focus is placed on neuroimaging data (e.g. compatible with BIDS - NB: currently not compliant with latest release candidate of BIDS Derivatives).

Installation

With pip installed:

pip install teneto

to upgrade teneto:

pip install teneto -U

Requires: Python 3.6+

Installing teneto via pip installs all python package requirements as well.

Documentation

More detailed documentation can be found at teneto.readthedocs.io [https://teneto.readthedocs.io] and includes tutorials.

Outlook

This package is under active development. And a lot of changes will still be made.

Contributers

For a list of contributors to teneto, see: teneto.readthedocs.io [https://teneto.readthedocs.io/en/latest/contribute.html]

Cite

If using this, please cite us. At present we do not have a dedicated article about teneto, but you can cite the software using the Zenodo DOI [https://doi.org/10.5281/zenodo.2535993] and/or the article where teneto is introduced, along with a considerable discussion about many of the measures in teneto:

Thompson et al (2017) “From static to temporal network theory applications to functional brain connectivity.” Network Neuroscience, 2: 1. p.69-99 Link [https://www.mitpressjournals.org/doi/abs/10.1162/NETN_a_00011]

What are temporal networks?

Temporal networks are, quite simply, network representations that flow through time. They are useful for analysing how a connected system develops, changes or evolves through time. This change in time can depict how information spreads along with a social network or how different brain areas cooperate to perform a task.

This page introduces some of the basic concepts of temporal network theory.

Node and edges: the basics of a network

A network is a representation of something using a graph from mathematics.
This something can be a representation of an empirical phenomenon or a simulation.
A graph contains nodes (sometimes called vertices) and edges (sometimes called links).

Nodes and edges can represent a vast amount of different things in the world. For example, nodes can be friends, cities, or brain regions. Edges between could represent trust relationships, train lines, and neuronal communication.

The flexibility in what nodes are is one of the reasons network theory is very interdisciplinary. The benefits of having network representation are that similar analysis methods can be applied, regardless of what the underlying node or edge represents. This abstractness means that network theory is a very inter-disciplinary subject. However, it also entails that certain concepts have multiple names (e.g. nodes and vertices).

With a network, you can analyse for example, if there is any “hub” node. In transportation networks, there are often hubs which connect many different areas where passengers usually have to change at (e.g. airports like Frankfurt, Heathrow or Denver). In social networks, you can quantify how many steps it is to another person in that network (see the famous six steps to Kevin Bacon).

Mathematically, A network if often referenced as G or \(\mathcal(G)\); i and j are indices of nodes; a tuple (i,j) reference an edge between nodes i and j. G is often expressed in the form of a connectivity matrix (or adjacency matrix) \(A_{ij} = 1\) if a connection is present and \(A_{ij} = 0\) if a connection is not present. The number of nodes if often referenced to as N. Thus, A is a N x N matrix.

Different network types

There are a few different versions of networks. Two key distinctions are:

	Are the connections binary or weighted.

	Are the connections undirected or directed.

If a connection is binary, then (as in the section above) an edge is either present or not. When adding a weight-value, an edge becomes a 3-tuple (i,j,w) where w is the magnitude of the weight. And in the connectivity matrix, \(A_{ij} = w\). Often the weight is between 0 and 1 or -1 and 1, but this does not have to be the case.

When connections are undirected, it means that both nodes share the connection. Examples of such networks can be if two cities are connected by train lines. For such networks \(A_{ij} = A_{ji}\). With directed edges, it means that the connection goes from i to j. Examples of these types of networks can be citation networks. If a scientific article i cites another article j, it is not common for j to also cite i. So in such cases, \(A_{ij}\) does not need to equal \(A_{ji}\). It is the common notation for the source node (sending the information) to be first and the target node (receiving the information) to be second.

Adding a time dimension

In the above formulation of networks \(A_{ij}\) only has one edge. In a temporal network, a time-stamp is also included in the edge’s tuple. Thus, binary edges are not expressed as 3-tuples (i,j,t) and weighted networks as 4 tuples (i,j,t,w). Connectivity matrices are now three dimensional: \(A_{ijt} = 1\) in binary and \(A_{ijt} = w\) in weighted networks.

The time indices are an ordered sequence. This ordering can now reveal information about what is occurring in the network through time.

For example, using friends’ lists from social network profiles can be used to create a static network about who is friends with who.
However, imagine one person enters a group of friends, by seeing when everyone become friends, this gives the network more explanatory power.

Compare the following two figures representing meetings between friends:

(Source code, png, hires.png, pdf)

[image: _images/what_is_tnt-1.png]

In the static network, on the left, each person (node) is a circle, and each black line connecting the rings is an edge. In this figure, we can see that everyone has met everyone except Dylan (orange) and Casey (light green).

The slice_plot on the left shows nodes (circles) at multiple “slices” (time-points). Each column represents of nodes represents one time-point. The black line connecting two nodes at a time-point signifies that they met at that time-point.

In the temporal network, we can see a progression of who met who and when. At event 1, Ashley and Blake met. Then A-D all met together at event 2. At event 3, Blake met Dylan. And at event 4, Elliot met Dylan and Ashley (but those two themselves did not attend). This depiction allows for new properties to be quantified that missed in a static network.

What is time-varying connectivity?

Another concept that is often used within fields such as cognitive neuroscience is time-varying connectivity. Time-varying connectivity is a larger domain of methods that analyse distributed patterns over time where temporal network theory is one set of analysis methods within it. Temporal network theory analyses time-varying connectivity representations that consist of time-stamped edges between nodes. There are other alternatives to analyse such representations and other time-varying connectivity representations as well (e.g. temporal ICA).

What is teneto?

Teneto is a python package that can several quantify temporal network measures (more are being added). It can also use methods from time-varying connectivity to derive connectivity estimate from time-series data.

Further reading

Holme, P., & Saramäki, J. (2012). Temporal networks. Physics reports, 519(3), 97-125. [Arxiv link [https://arxiv.org/pdf/1108.1780.pdf]] - Comprehensive introduction about core concepts of temporal networks.

Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of complex networks, 2(3), 203-271. [Link [https://academic.oup.com/comnet/article/2/3/203/2841130]] - General overview of multilayer networks.

Lurie, D., Kessler, D., Bassett, D., Betzel, R. F., Breakspear, M., Keilholz, S., … & Calhoun, V. (2018). On the nature of resting fMRI and time-varying functional connectivity. [Psyarxiv link [https://psyarxiv.com/xtzre/download?format=pdf]] - Review of time-varying connectivity in human neuroimaging.

Masuda, N., & Lambiotte, R. (2016). A Guidance to Temporal Networks. [Link to book’s publisher [https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001]] - Book that covers a lot of the mathematics of temporal networks.

Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., & Latora, V. (2013). Graph metrics for temporal networks. In Temporal networks (pp. 15-40). Springer, Berlin, Heidelberg. [Arxiv link [https://arxiv.org/pdf/1306.0493]] - Review of some temporal network metrics.

Thompson, W. H., Brantefors, P., & Fransson, P. (2017). From static to temporal network theory: Applications to functional brain connectivity. Network Neuroscience, 1(2), 69-99. [Link [https://www.mitpressjournals.org/doi/full/10.1162/netn_a_00011]] - Article introducing temporal network’s in cognitive neuroscience context.

Tutorial

	Tutorial: Network representation in Teneto
	TemporalNetwork object

	Array/snapshot representation

	Contact representation

	Converting between contact and graphlet representations

	Tutorial: Temporal network measures
	Centrality measures

	Community dependent measures

	Global measures

	Edge measures

	Community measures

	Workflows
	Creating a workflow

	Running a workflow

	Viewing the output

	More complicated workflows

	TenetoBIDS
	Prerequisites

	Contents of this tutorial

	A complete analysis

	Big Picture

	Step 1 - defining the TenetoBIDS object.

	Step 2 Calling the run function to make a parcellation.

	Step 3 Regress out confounds

	Step 4: Additonal preprocessing

	Step 5: Calculats time-varying connectivity

	Step 6: Performs a binarization of the network

	Step 7: Calculate a network measure

	Step 8: load data

	TCTC
	Backgorund

	Outline

	Read more

	TCTC - example

	Changing the hyperparameters

	Changing \(\epsilon\)

	Changing \(\tau\)

	Changing \(\sigma\)

	Changing \(\kappa\)

Tutorial: Network representation in Teneto

There are three ways that network’s are represented in Teneto:

	A TemporalNetwork object

	Numpy array/snapshot

	Dictionary/contact representation

This tutorial goes through what these different representations. Teneto is migrating towards the TemporalNetwork object.
However, it is possible to still use with the other two representations.

TemporalNetwork object

TemporalNetwork is a class in teneto.

>>> from teneto import TemporalNetwork
>>> tnet = TemporalNetwork()
...

As an input, you can pass it a 3D numpy array,
a contact representation (see below),
a list of edges or a pandas df (see below).

A feature of the TemporalNetwork class is that the different
functions such as plotting and networkmeasures
can be accessed within the object.

For example, the code below calls the function
teneto.generatenetwork.rand_binomial
with all subsequent arguments being arguments for the rand_binomial function:

>>> import numpy as np
>>> np.random.seed(2019) # Set random seed for replication
>>> tnet.generatenetwork('rand_binomial',size=(5,3), prob=0.5)

The data this creates is found in tnet.network which is a pandas data frame.
To have a peak at the top of the data frame, we can call:

>>> tnet.network.head()
 i j t
0 0 1 0
1 0 1 1
2 0 2 0
3 0 2 1
4 0 2 2

Each line in the data frame represents one edge.
i and j are both node indexes and t is a temporal index.
These column names are always present in data frames made by Teneto.
There is no weight column here which indicates this is a binary network.

Exploring the network

You can inspect different parts of the network by calling
tnet.get_network_when() and specifying an i, j or t argument.

>>> tnet.get_network_when(i=1)
 i j t
6 1 2 0
7 1 2 2
8 1 3 0
9 1 4 1

The different argument can also be combined.

>>> tnet.get_network_when(i=1, t=0)
 i j t
6 1 2 0
8 1 3 0

Lists can also be specified as arguments:

>>> tnet.get_network_when(i=[0, 1], t=1)
 i j t
1 0 1 1
3 0 2 1
5 0 4 1
9 1 4 1

The logic within each argument is OR
(i.e. about get all where i == 1 OR i == 0).
The logic between the different arguments, defaults to AND.
(i.e. get when i == [0 or 1] AND t == 1).
In some cases, you may might the between argument logic to be OR:

>>> tnet.get_network_when(i=1, j=1, logic='or')
 i j t
0 0 1 0
1 0 1 1
6 1 2 0
7 1 2 2
8 1 3 0
9 1 4 1

In the above case we select all edges where i == 1 OR j == 1.

Weighted networks

When a network is weighted,
the weight appears in its own column in the pandas data frame.

>>> np.random.seed(2019) # For reproducibility
>>> G = np.random.beta(1, 1, [5,5,3]) # Creates 5 nodes and 3 time-points
>>> tnet = TemporalNetwork(from_array=G, nettype='wd', diagonal=True)
>>> tnet.network.head()
 i j t weight
0 0 0 0 0.628820
1 0 0 1 0.059084
2 0 0 2 0.833974
3 0 1 0 0.856509
4 0 1 1 0.518670

Self edges get deleted unless the argument diagonal=True is passed.
Above we can see that there are edges when both i and j are 0.

Dense and sparse networks

The example we saw previously was of a sparse network representation.
This means that only the active connections are encoded in the representation
and all other edges can be assumed to be zero/absent.

There are many weighted networks all edges have a value.
These networks are called dense.

In denser networks, tnet.network will be a numpy array with
node,node,time dimensions.
The reason for this is simply speed.
If you do not want a dense network to be created, you can pass a
forcesparse=True argument when creating the TemporalNetwork.

If teneto is slow, it could be that creating the sparse network
is taking too much time. So one way to ensure the dense representation
is forced is to set the parameter dense_threshold.
The default value is 0.1 (i.e. 10%),
which means that if 10% of the network’s connections are present,
teneto will make the network dense.
But you can set this to any value.

The TemporalNetwork functions such as get_network_when()
still function with the dense representation.

Exporting to a numpy array

You can export the network to a numpy array
from the pandas data frame by calling to array:

>>> np.random.seed(2019) # For reproducibility
>>> G = np.random.beta(1, 1, [5,5,3]) # Creates 5 nodes and 3 time-points
>>> tnet = TemporalNetwork(from_array=G, nettype='wd', diagonal=True)
>>> G2 = tnet.to_array()
>>> G == G2
True

Here G2 is a 3D numpy array which is equal to the input G (a numpy array).

Meta-information

Within the object there are multiple bits of information about the network.
We, for example, check that the above network create below is binary:

>>> tnet = TemporalNetwork()
>>> tnet.generatenetwork('rand_binomial',size=(3,5), prob=0.5)
>>> tnet.nettype
'bu'

	There are 4 different nettypes:

	bu, wu, wd and bd.

where b is for binary, w is for weighted,
u means undirected and d means directed.
Teneto tries to estimate the nettype, but specifying it is good practice.

You can also get the size of the network by using:

>>> tnet.netshape
(3, 5)

Which means there are 3 nodes and 5 time-points.

Certain metainformation is automatically used in the plotting tools.
For example, you can add some meta information
using the nodelabels (give names to the nodes),
timelabels (give names to the time points), and timeunit arguments.

>>> import matplotlib.pyplot as plt
>>> tlabs = ['2014','2015','2016','2017','2018']
>>> tunit = 'years'
>>> nlabs = ['Ashley', 'Blake', 'Casey']
>>> tnet = TemporalNetwork(nodelabels=nlabs, timeunit=tunit, timelabels=tlabs, nettype='bu')
>>> tnet.generatenetwork('rand_binomial',size=(3,5), prob=0.5)
>>> tnet.plot('slice_plot', cmap='Set2')
>>> plt.show()

(Source code, png, hires.png, pdf)

[image: ../_images/networkrepresentation-1.png]

Importing data to TemporalNetwork

There are multiple ways to add data to the TemporalNetwork object.
These include:

	A 3D numpy array

	Contact representation

	Pandas data frame

	List of edges

Numpy Arrays

For example, here we create a random network based on a beta distribution.

>>> np.random.seed(2019)
>>> G = np.random.beta(1, 1, [5,5,3])
>>> G.shape
(5, 5, 3)

Numpy arrays can get added by using the from_array argument

>>> tnet = TemporalNetwork(from_array=G)

Or for an already defined object:

>>> tnet.network_from_array(G)

Contact representation

The contact representation (see below) is a dictionary which a key called
contacts includes a contact list of lists and some additional metadata.
Here the argument is from_dict should be called.

>>> C = {'contacts': [[0,1,2],[1,0,0]],
 'nettype': 'bu',
 'netshape': (2,2,3),
 't0': 0,
 'nodelabels': ['A', 'B'],
 'timeunit': 'seconds'}
>>> tnet = TemporalNetwork(from_dict=C)

Or alternatively:

>>> tnet = TemporalNetwork()
>>> tnet.network_from_dict(C)

Pandas data frame

Using a pandas data frame the data can also be imported.
Here the required columns are: i, j and t
(the first two are nodes, the latter is time index).
The column weight is also needed for weighted networks.

>>> import pandas as pd
>>> netin = {'i': [0,0,1,1], 'j': [1,2,2,2], 't': [0,0,0,1], 'weight': [0.5,0.75,0.25,1]}
>>> df = pd.Data Frame(data=netin)
>>> tnet = TemporalNetwork(from_df=df)
>>> tnet.network
 i j t weight
0 0 1 0 0.50
1 0 2 0 0.75
2 1 2 0 0.25
3 1 2 1 1.00

List of edges

Alternatively a list of lists can be given to TemporalNetwork,
in such cases each sublist should follow the order [i,j,t,[weight]].
For example:

>>> edgelist = [[0,1,0,0.5], [0,1,1,0.75]]
>>> tnet = TemporalNetwork(from_edgelist=edgelist)
>>> tnet.network
 i j t weight
0 0 1 0 0.50
1 0 1 1 0.75

This creates two edges between nodes 0 and 1
at two different time-points with two weights.

Array/snapshot representation

The array/snapshort representation is a three dimensional numpy array.
The dimensions are (node,node,time).

The positives of arrays are that they is easy to understand and manipulate.
The downside is that any meta-information about the network is lost and,
when the networks are big, can use a lot of memory.

Contact representation

Note, the contact representation is going to be phased out in
favour for the TemporalNetwork object with time.

The contact representations is a dictionary that can
includes more information about the network than an array.

The keys in the dictionary include ‘contact’ (node,node,timestamp)
which define all the edges in te network.
A weights key is present in weighted networks containing the weights.
Other keys for meta-information include:
‘dimord’ (dimension order), ‘Fs’ (sampling rate),
‘timeunit’, ‘nettype’ (if network is weighted/binary, undirected/directed),
‘timetype’, nodelabels (node labels), t0 (the first time point).

Converting between contact and graphlet representations

Converting between the two different network representations is quite easy.
Let us generate a random network that consists of 3 nodes and 5 time points.

import teneto
import numpy as np

For reproducibility
np.random.seed(2018)
Number of nodes
N = 3
Number of time-points
T = 5
Probability of edge activation
p0to1 = 0.2
p1to1 = .9
G = teneto.generatenetwork.rand_binomial([N,N,T],[p0to1, p1to1],'graphlet','bu')
Show shape of network
print(G.shape)

You can convert a graphlet representation to contact representation with:
teneto.utils.graphlet2contact

C = teneto.utils.graphlet2contact(G)
print(C.keys)

To convert the opposite direction, type teneto.utils.contact2graphlet:

G2 = teneto.utils.contact2graphlet(C)
G==G2

Tutorial: Temporal network measures

The module teneto.networkmeasures includes several functions to quantify different properties of temporal networks. Below are four different types of properties which can be calculated for each node. For all these properties you can generally derive a time-averaged version or one value per time-point.

Many of the functions use a calc argument to specify what type of measure you want to quantify. For example calc=’global’ will return the global version of a measure and calc=’communities’ will return the community version of the function.

Centrality measures

Centrality measures quantify a value per node. These can be useful for finding important nodes in the network.

	temporal_degree_centrality()

	temporal_betweenness_centrality()

	temporal_closeness_centrality()

	topological_overlap()

	bursty_coeff()

Community dependent measures

Community measure quantify a value per community or a value for community interactions. Communities are an important part of network theory, where nodes are grouped into groups.

	sid(), when calc=’community_avg’ or calc=’community_pairs’

	bursty_coeff(), when calc=’communities’

	volatility(), when calc=’communities’

Node measures that are dependent on community vector

	temporal_participation_coeff()

	temporal_degree_centrality(), when calc=’module_degree_zscore’

Global measures

Global measures try and calculate one value to reflect the entire network.
Examples of global measures:

	temporal_efficiency()

	reachability_latency()

	fluctuability()

	volatility(), when calc=’global’

	topological_overlap(), when calc=’global’

	sid(), when calc=’global’

Edge measures

Edge measures quantify a property for each edge.

	shortest_temporal_paths()

	intercontacttimes()

	local_variation()

Community measures

Community measures quantify the community partition instead of the underlying network. These are found in the module teneto.communitymeasures

	allegiance()

	flexibility()

	integration()

	persistence()

	promiscuity()

	recruitment()

Workflows

Many analyses can be constructed as a graph to depict all the steps that are made during the analysis.
This graph of an analysis is called a workflow. There are many benefits to creating a workflow:

	Construct entire analysis workflow and view it before running.

	Carefully records every step, so you know exactly what you did.

	Can share the entire analysis with someone else (good for reproducibility).

TenetoWorkflow allows you to define a workflow object and then run it. A workflow consists of a directed graph. The nodes of this graph are different Teneto functions. The directed edges of the graph is the sequence the pipeline is run in.

The workflows function around the TenetoBIDS or TemporalNetwork classes. Any analysis made using those classes can be made into a workflow.

There are three different types of nodes in this graph:

root nodes: These are nodes that do not depend on any other nodes in the analysis. These are calls to create a _TenetoBIDS_ or _TemporalNetwork_ object.

non-terminal nodes: These are nodes that are intermediate steps in the analysis.

terminal nodes: These are the final nodes in the analysis. These nodes will include the output of the analysis.

Understanding the concept of root and terminal nodes are useful to understand how the input and output of TenetoWorkflow.

Creating a workflow

We are going to create a workflow that does the following three steps:

	Creates a temporal network object (root node)

	Generates random data (non-terminal node)

	Calculates the temporal degree centrality of each node (terminal node)

We start by creating a workflow object, and defining the first node:

>>> from teneto import TenetoWorkflow
>>> twf = TenetoWorkflow()
>>> nodename = 'create_temporalnetwork'
>>> func = 'TemporalNetwork'
>>> twf.add_node(nodename=nodename, func=func)

Each node in the workflow graph needs a unique name (argument: nodename). If you create two different TemporalNetwork objects in the workflow, these need different names to differentiate them.

The func argument specifies the class that is initiated or the function that is run.

There are two more optional arguments that can be passed to add_node: depends_on and params. We will look at those later though.

By adding a node, this creates an attribute in the workflow object which can be viewed as:

>>> twf.nodes
{'create_temporalnetwork': {'func': 'TemporalNetwork', 'params': {}}}

It also creates a graph (pandas dataframe) which is found in TenetoWorkflow.graph.

>>> twf.graph
 i j
0 isroot create_temporalnetwork

Since this is the first node in the workflow, _isroot_ is placed in the _i_ column to signify that _create_temporalnetwork_ is the root node.

Now let us add the next two nodes and we will see the params argument add_node:

>>> # Generate network node
>>> nodename = 'generatenetwork'
>>> func = 'generatenetwork'
>>> params = {
 'networktype': 'rand_binomial',
 'size': (10,5),
 'prob': (0.5,0.25),
 'randomseed': 2019
 }
>>> twf.add_node(nodename, func, params=params)
>>> # Calc temporal degree centrality node
>>> nodename = 'degree'
>>> func = 'calc_networkmeasure'
>>> params = {
 'networkmeasure': 'temporal_degree_centrality',
 'calc': 'time'
 }
>>> twf.add_node(nodename, func, params=params)

Here we see that the params argument is a dictionary of _*kwargs_ for the _TemporalNetwork.generatenetwork_ and _TemporalNetwork.calc_networkmeasure_ functions.

Now we have three nodes defined, so we can look at the TenetoWorkflow.graph:

>>> twf.graph
 i j
0 isroot create_temporalnetwork
1 create_temporalnetwork generatenetwork
2 generatenetwork degree

Each row here shows the new node in the _j_-th column and the step preceding node in the _i_-th column.

The workflow graph can be plotted with:

>>> fig, ax = twf.make_workflow_figure()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/workflow-1.png]

Running a workflow

Now the workflow has been defined, it can be run by typing:

>>> tfw.run()

And this will run all of steps.

Viewing the output

The output of the final step will be found in TenetoWorkflow.output_[<nodename>].

The nodes included here will be all the terminal nodes. However when defining the TenetoWorkflow, you can set the argument, _remove_nonterminal_output_ to False and all node output will be stored.

The output from the above is found in:

>>> tfw.output_['degree']
...

More complicated workflows

The previous example consists of only three steps and occurs linearly. In practice analyses are usually more complex. One typical example is where multiple parameters are run (e.g. to demonstrate that a result is dependent on that parameter).

Here we define a more complex network where we generate two different networks. One where there is a high probability of edges in the network and one where there is a low probability.

When adding a node, the node refers to the last node defined unless depends_on is set. This should point to another preset node.

Example:

First define the object.

>>> from teneto import TenetoWorkflow
>>> twf = TenetoWorkflow()
>>> nodename = 'create_temporalnetwork'
>>> func = 'TemporalNetwork'
>>> twf.add_node(nodename=nodename, func=func)

Then we generate the first network where edges have low probability.

>>> nodename = 'generatenetwork_lowprob'
>>> func = 'generatenetwork'
>>> params = {
 'networktype': 'rand_binomial',
 'size': (10,5),
 'prob': (0.25,0.25),
 'randomseed': 2019
 }
>>> twf.add_node(nodename, func, params=params)

Then add the calculate degree step.

>>> nodename = 'degree_lowprob'
>>> func = 'calc_networkmeasure'
>>> params = {
 'networkmeasure': 'temporal_degree_centrality',
 'calc': 'time'
 }
>>> twf.add_node(nodename, func, params=params)

Now we generate a second network where edges have higher probability. Here depends_on is called and refers back to the create_temporalnetwork node.

>>> nodename = 'generatenetwork_highprob'
>>> func = 'generatenetwork'
>>> depends_on = 'create_temporalnetwork'
>>> params = {
 'networktype': 'rand_binomial',
 'size': (10,5),
 'prob': (0.75,0.1),
 'randomseed': 2019
 }
>>> twf.add_node(nodename, func, depends_on, params)

Now we can calculate temporal degree centrality on this network:

>>> nodename = 'degree_highprob'
>>> func = 'calc_networkmeasure'
>>> params = {
 'networkmeasure': 'temporal_degree_centrality',
 'calc': 'time'
 }
>>> twf.add_node(nodename, func, params=params)

And this workflow can be plotted like before:

>>> fig, ax = twf.make_workflow_figure()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/workflow-2.png]

TenetoBIDS

TenetoBIDS allows use of Teneto functions to analyse entire datasets in just a few lines of code. The output from Teneto is then ready to be placed in statistical models, machine learning algorithms and/or plotted.

Prerequisites

To use TenetoBIDS you need preprocessied fMRI data in the BIDS format [https://github.com/bids-standard/bids-specification]. It is tested and optimized for fMRIPrep [https://fmriprep.readthedocs.io/en/stable/] but other preprocessing software following BIDS should (in theory) work too. For fMRIPrep V1.4 or later is requiresd. This preprocessed data should be in the ~BIDS_dir/derivatives/ directory. The output from teneto will always be found in …/BIDS_dir/derivatives/ in
directories that begin with teneto- (depending on the function you use).

Contents of this tutorial

This tutorial will run a complete analysis on some test data.

For this tutorial, we will use some dummy data which is included with teneto. This section details what is in this data.

[1]:

import teneto
import os
dataset_path = teneto.__path__[0] + '/data/testdata/dummybids/'
print(os.listdir(dataset_path))
print(os.listdir(dataset_path + '/derivatives'))

['participants.tsv', 'dataset_description.json', 'sub-001', 'derivatives', 'sub-002']
['teneto-censor-timepoints', 'teneto-derive-temporalnetwork', 'teneto-volatility', 'teneto-exclude-runs', 'teneto-tests', 'teneto-make-parcellation', 'fmriprep', 'teneto-binarize', 'teneto-remove-confounds']

From the above we can see that there are two subjects in our dataset, and there is a fMRIPrep folder in the derivatives section. Only subject 1 has any dummy data, so we will have to select subject 1.

A complete analysis

Below is a complete analysis of this test data. We will go through each step after it.

[2]:

#Imports.
from teneto import TenetoBIDS
from teneto import __path__ as tenetopath
import numpy as np
#Set the path of the dataset.
datdir = tenetopath[0] + '/data/testdata/dummybids/'

Step 1:
bids_filter = {'subject': '001',
 'run': 1,
 'task': 'a'}
tnet = TenetoBIDS(datdir, selected_pipeline='fmriprep', bids_filter=bids_filter, exist_ok=True)

Step 2: create a parcellation
parcellation_params = {'atlas': 'Schaefer2018',
 'atlas_desc': '100Parcels7Networks',
 'parc_params': {'detrend': True}}
tnet.run('make_parcellation', parcellation_params)

Step 3: Regress out confounds
remove_params = {'confound_selection': ['confound1']}
tnet.run('remove_confounds', remove_params)

Step 4: Additonal preprocessing
exclude_params = {'confound_name': 'confound1',
 'exclusion_criteria': '<-0.99'}
tnet.run('exclude_runs', exclude_params)
censor_params = {'confound_name': 'confound1',
 'exclusion_criteria': '<-0.99',
 'replace_with': 'cubicspline',
 'tol': 0.25}
tnet.run('censor_timepoints', censor_params)

Step 5: Calculats time-varying connectivity
derive_params = {'params': {'method': 'jackknife',
 'postpro': 'standardize'}}
tnet.run('derive_temporalnetwork', derive_params)

Step 6: Performs a binarization of the network
binaraize_params = {'threshold_type': 'percent',
 'threshold_level': 0.1}
tnet.run('binarize', binaraize_params)

Step 7: Calculate a network measure
measure_params = {'distance_func': 'hamming'}
tnet.run('volatility', measure_params)

Step 8: load data
vol = tnet.load_data()
print(vol)

{'sub-001_run-1_task-a_vol.tsv': 0
0 0.103733}

Big Picture

While the above code may seem overwhelming at first. It is quite little code for what it does. It starts with nifti images and ends with a single measure about a time-varying connectivity estimate of the network.

There is one recurring theme used in the code above:

tnet.run(function_name, function_parameters)

function_name is a string and function_parameters is a dictionary function_name can be most functions in teneto if the data is in the correct format. function_parameters are the inputs to that function. You never need to pass the input data (e.g. time series or network), or any functions that have a sidecar input.

TenetoBIDS will also automatically try and find a confounds file in the derivatives when needed, so, this does not need to be specified either.

Once you have grabbed the above, the rest is pretty straight forward. But we will go through each step in turn.

Step 1 - defining the TenetoBIDS object.

[3]:

#Set the path of the dataset.
datdir = tenetopath[0] + '/data/testdata/dummybids/'
Step 1:
bids_filter = {'subject': '001',
 'run': 1,
 'task': 'a'}
tnet = TenetoBIDS(datdir, selected_pipeline='fmriprep', bids_filter=bids_filter, exist_ok=True)

selected_pipeline

**This states where teneto will go looking for files. This example shows it should look in the fMRIPrep derivative directory. (i.e. in: datadir + ‘/derivatives/fmriprep/’).

bids_filter

teneto uses pybids [https://github.com/bids-standard/pybids/] to select different files. The bids_filter argument is a dictionary of arguments that get passed into the BIDSLayout.get. In the example above, we are saying we want subject 001, run 1 and task a. If you do not provide any arguments for bids_filter, all data found within the derivatives folder gets selected for analyses.

exist_ok (default: False)

This checks that it is ok to overwrite any previous calculations. The output data is saved in a new directory. If the new output directory already exists, the teneto step has previously been run, and an error will be returned because otherwise data may be overwritten. To overrule this error, set exists_ok to True.

We can now look at what files are selected that will be run on the next step.

[4]:

tnet.get_selected_files()

[4]:

[<BIDSDataFile filename='/home/william/anaconda3/lib/python3.6/site-packages/teneto/data/testdata/dummybids/derivatives/fmriprep/sub-001/func/sub-001_task-a_run-01_desc-confounds_regressors.tsv'>,
 <BIDSImageFile filename='/home/william/anaconda3/lib/python3.6/site-packages/teneto/data/testdata/dummybids/derivatives/fmriprep/sub-001/func/sub-001_task-a_run-01_desc-preproc_bold.nii.gz'>]

If there are files here you do not want, you can add to the bids filter with tnet.update_bids_filter Or, you can set tnet.bids_filter to a new dictionary if you want.

Next, you might want to see what functions you can run on these selected files. The following will specify what functions can be run specifically on the selected data. If you want all options, you can add the for_selected=False.

[5]:

tnet.get_run_options()

[5]:

'make_parcellation, exclude_runs'

The output here (exclude_runs and make_parcellation) says which functions that, with the selected files, can be called in tnet.run. Once different functions have been called, the options change.

Step 2 Calling the run function to make a parcellation.

When selecting preprocessed files, these will often be nifti images. From these images, we want to make time-series of regions of interests. This can be done with :py:func:.make_parcellation. This function uses TemplateFlow [https://github.com/templateflow/templateflow/] atlases to make the parcellation.

[6]:

parcellation_params = {'atlas': 'Schaefer2018',
 'atlas_desc': '100Parcels7Networks',
 'parc_params': {'detrend': True}}
tnet.run('make_parcellation', parcellation_params)

The atlas and atlas_desc are used to identify TemplateFlow atlases.

Teneto uses nilearn’s NiftiLabelsMasker [https://nilearn.github.io/modules/generated/nilearn.input_data.NiftiLabelsMasker.html] to mark the parcellation. Any arguments to this function (e.g. preprocessing steps) can be passed in the argument using ‘parc_params’ (here detrend is used).

Step 3 Regress out confounds

[7]:

remove_params = {'confound_selection': ['confound1']}
tnet.run('remove_confounds', remove_params)

Confounds can be removed by calling :py:func:.remove_confounds.

The confounds tsv file is automatically located as long as it is in a derivatives folder and that there is only one

Here ‘confound1’ is a column namn in the confounds tsv file.

Similarly to make parcellation, it uses nilearn (nilean.signal.clean [https://nilearn.github.io/modules/generated/nilearn.signal.clean.html]. clean_params is a possible argument, like parc_params these are inputs to the nilearn function.

Step 4: Additonal preprocessing

[8]:

exclude_params = {'confound_name': 'confound1',
 'exclusion_criteria': '<-0.99'}
tnet.run('exclude_runs', exclude_params)
censor_params = {'confound_name': 'confound1',
 'exclusion_criteria': '<-0.99',
 'replace_with': 'cubicspline',
 'tol': 0.25}
tnet.run('censor_timepoints', censor_params)

These two calls to tnet.run exclude both time-points and runs, which are problematic. The first, exclude_runs, rejects any run where the mean of confound1 is less than 0.99. Excluded runs will no longer be part of the loaded data in later calls of tnet.run().

Centoring time-points here says that whenever there is a time-point that is less than 0.99, it will be “censored” (set to not a number). We have also set argument replace_with to ‘cubicspline’. This argument means that the values that have censored now get simulated using a cubic spline. The parameter tol says what percentage of time-points are allowed to be censored before the run gets ignored.

Step 5: Calculats time-varying connectivity

The code below now derives time-varying connectivity matrices. There are multiple different methods that can be called. See teneto.timeseries.derive_temporalnetwork for more options.

[9]:

derive_params = {'params': {'method': 'jackknife',
 'postpro': 'standardize'}}
tnet.run('derive_temporalnetwork', derive_params)

Step 6: Performs a binarization of the network

Once you have a network representation, there are multiple ways this can be transformed. One example, is to binarize the network so all values are 0 or 1. The code below converts the top 10% of edges to 1s, the rest 0.

[10]:

binaraize_params = {'threshold_type': 'percent',
 'threshold_level': 0.1}
tnet.run('binarize', binaraize_params)

Step 7: Calculate a network measure

We are now ready to calculate a property of the temproal network. Here we calculate volatility (i.e. how much the network changes per time-point). This generates one value per subject.

[11]:

measure_params = {'distance_func': 'hamming'}
tnet.run('volatility', measure_params)

Step 8: load data

[12]:

vol = tnet.load_data()
print(vol)

{'sub-001_run-1_task-a_vol.tsv': 0
0 0.103733}

Now that we have a measure of volatility for the network. We can now load it and view the measure.

TCTC

Backgorund

TCTC stands for Temporal Communities by Trajectory Clustering. It is an algorithm designed to find temporal communities on time series data.

The kind of data needed for TCTC are:

	Multiple time series.

	The time series are from nodes in a network.

Most community detection requires to first create an “edge inference” step where the edges of the different nodes are first calculated.

TCTC first finds clusters of trajectories in the time series without inferring edges. A trajectory is a time series moving through some space. Trajectory clustering tries to group together nodes that have similar paths through a space.

The hyperparameters of TCTC dictate what type of trajectory is found in the data. There are four hyperparameters:

	A maximum distance parameter (\(\epsilon\)). The distance between all nodes part of the same trajectory must be \(\epsilon\) or lower.

	A minimum size parameter (\(\sigma\)). All trajectories must include at least \(\sigma\) many nodes.

	A minimum time parameter (\(\tau\)). All trajectories must persist for \(\tau\) time-points.

	A tolerance parameter (\(\kappa\)). \(\kappa\) consecutive “exception” time-points can exist before the trajectory ends.

Outline

This example shows only how TCTC is run and how the different hyperparameters effect the community detection. These hyperparameters can be trained (saved for another example).

Read more

TCTC is outlined in more detail in this article [https://www.biorxiv.org/content/10.1101/617027v1]

TCTC - example

We will start by generating some data and importing everything we need.

[1]:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from teneto.communitydetection import tctc
import pandas as pd

Failed to import duecredit due to No module named 'duecredit'
/home/william/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216, got 192
 return f(*args, **kwds)
/home/william/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__
 return f(*args, **kwds)
/home/william/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject
 return f(*args, **kwds)

[2]:

data = np.array([[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 1],
 [0, 0, 0, 0, 1, 1, 1, 0, 2, 2, 2, 2, 1],
 [1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 0], [-1, 0, 1, 1, 0, -1, 0, -1, 0, 2, 1, 0, -1]], dtype=float)
data = data.transpose()
np.random.seed(2019)
data += np.random.uniform(-0.2, 0.2, data.shape)

[3]:

Lets have a look at the data
fig, ax = plt.subplots(1)
p = ax.plot(data)
ax.legend(p, [0,1,2,3])
ax.set_xlabel('time')
ax.set_ylabel('amplitude')
print(data.shape)

(13, 4)

[image: ../_images/tutorial_tctc_4_1.png]

There are two different outputs that TCTC can produce. TCTC allows for multilabel communities (i.e. the same node can belong to multiple communities). The output of TCTC can either be:

	As a binary array (dimensions: node,node,time) where each 1 designates that two nodes are in the same community.

	As a dataframe where each row is a community.

The default output is option one.

So let us run TCTC on the data we have above.

[4]:

parameters = {
 'epsilon': 0.5,
 'tau': 3,
 'sigma': 2,
 'kappa': 0
}
tctc_array = tctc(data, **parameters)
print(tctc_array.shape)

(4, 4, 13)

For now ignore the values in the “parameters” dictionary, we will go through that later.

In order to get the dataframe output, just add output=’df’.

[5]:

parameters = {
 'epsilon': 0.5,
 'tau': 3,
 'sigma': 2,
 'kappa': 0
}
tctc_df = tctc(data, **parameters, output='df')
print(tctc_df.head())

 community start end size length
0 [0, 1] 0 7 2.0 7
1 [2, 3] 1 4 2.0 3
2 [0, 1, 2] 4 7 3.0 3
3 [0, 2] 4 11 2.0 7
5 [2, 3] 9 12 2.0 3

Here we can see when the different communities start, end, the size, and the length.

Below we define a function which plots each community on the original data.

[6]:

def community_plot(df, data):
 nrows = int(np.ceil((len(df)+1)/2))
 fig, ax = plt.subplots(nrows, 2, sharex=True, sharey=True, figsize=(8, 2+nrows))
 ax = ax.flatten()
 p = ax[0].plot(data)
 ax[0].set_xlabel('time')
 ax[0].set_ylabel('amplitude')
 ax[0].set_title('Original data')

 for i, row in enumerate(df.iterrows()):
 ax[i+1].plot(data, alpha=0.15, color='gray')
 ax[i+1].plot(np.arange(row[1]['start'],row[1]['end']),data[row[1]['start']:row[1]['end'], row[1]['community']],color=plt.cm.Set2.colors[i])
 ax[i+1].set_title('Community: ' + str(i))

 plt.tight_layout()
 return fig, ax

fig, ax = community_plot(tctc_df, data)

[image: ../_images/tutorial_tctc_11_0.png]

The multiple community labels can be seed in 0 and 2 above. Where 2 contains three nodes and community 0 contains 2 nodes.

Changing the hyperparameters

Now we will rerun TCTC but change each of the parameters in turn and then display them on a community plot.

Changing \(\epsilon\)

If we make \(\epsilon\) larger, we will include more time series in a trajectory.

This however can mean that the communities you detect are less “connected” than if \(\epsilon\) was smaller

[7]:

parameters = {
 'epsilon': 1.5,
 'tau': 3,
 'sigma': 2,
 'kappa': 0
}
tctc_df_largeep = tctc(data, **parameters, output='df')
fig, ax = community_plot(tctc_df_largeep, data)

[image: ../_images/tutorial_tctc_15_0.png]

Changing \(\tau\)

If we make \(\tau\) larger, it requires that trajectories persist for more time points.

Shorter trajectories increase the change of more noisey connections.

[8]:

parameters = {
 'epsilon': 0.5,
 'tau': 2,
 'sigma': 2,
 'kappa': 0
}
tctc_df_shorttau = tctc(data, **parameters, output='df')
fig, ax = community_plot(tctc_df_shorttau, data)

[image: ../_images/tutorial_tctc_17_0.png]

[9]:

parameters = {
 'epsilon': 0.5,
 'tau': 5,
 'sigma': 2,
 'kappa': 0
}
tctc_df_longtau = tctc(data, **parameters, output='df')
fig, ax = community_plot(tctc_df_longtau, data)

[image: ../_images/tutorial_tctc_18_0.png]

Changing \(\sigma\)

If we make \(\sigma\) larger, it requires that more nodes are part of the trajectory.

Smaller values of \(\sigma\) will result in possible noiser connections.

[10]:

parameters = {
 'epsilon': 0.5,
 'tau': 3,
 'sigma': 3,
 'kappa': 0
}
tctc_df_longsigma = tctc(data, **parameters, output='df')
fig, ax = community_plot(tctc_df_longsigma, data)

[image: ../_images/tutorial_tctc_20_0.png]

Changing \(\kappa\)

If we make \(\kappa\) larger, it allows for that many number of “noisey” time-points to exist to see if the trajectory continues.

In the data we have been looking at, node 0 and 1 are close to each other except for time-point 7 and 10. If we let \(\kappa\) be 1, if will ignore these time-points and allow the trajectory to continue.

[11]:

parameters = {
 'epsilon': 0.5,
 'tau': 3,
 'sigma': 2,
 'kappa': 1
}
tctc_df_withkappa = tctc(data, **parameters, output='df')
fig, ax = community_plot(tctc_df_withkappa, data)

[image: ../_images/tutorial_tctc_22_0.png]

API

	TemporalNetwork, TenetoBIDS and TenetoWorkflow

	teneto.communitydetection

	teneto.communitymeasures

	teneto.networkmeasures

	teneto.plot

	teneto.timeseries

	teneto.trajectory

	teneto.utils

TemporalNetwork, TenetoBIDS and TenetoWorkflow

teneto.classes Package

Classes in Teneto

Classes

	TenetoBIDS(bids_dir, selected_pipeline[, …])

	Class for analysing data in BIDS.

	TemporalNetwork([N, T, nettype, from_df, …])

	A class for temporal networks.

	TenetoWorkflow([remove_nonterminal_output])

	

Class Inheritance Diagram

[image: Inheritance diagram of teneto.classes.bids.TenetoBIDS, teneto.classes.network.TemporalNetwork, teneto.classes.workflow.TenetoWorkflow]

TenetoBIDS

	
class TenetoBIDS(bids_dir, selected_pipeline, bids_filter=None, bidsvalidator=False, update_pipeline=True, history=None, exist_ok=False, layout=None, nettsv='nn-t')[source]

	Bases: object

Class for analysing data in BIDS.

TenetoBIDS allows for an analysis to be performed across a dataset.
All different functions from Teneto can be applied to all files in a dataset organized in BIDS.
Data should be first preprocessed (e.g. fMRIPrep).

	Parameters

	
	bids_dir (str) – string to BIDS directory

	selected_pipeline (str or dict) – the directory that is in the bids_dir/derivatives/<selected_pipeline>/.
This fine will be used as the input to any teneto function (first argument).
If multiple inputs are required for a function, then you can specify:

{‘netin’: ‘tvc’,
‘communities’: ‘coms’}

With this, the input for netin with be from bids_dir/derivatives/[teneto-]tvc/,
and the input for communities will be from bids_dir/derivatives/[teneto-]coms/.
The keys in this dictionary must match the names of the teneto funciton inputs.

	bids_filter (dict) –

	history (bool) –

	update_pipeline (bool) – If true, the output_pipeline becomes the new selected_pipeline

	exist_ok (bool) – If False, will raise an error if the output directory already exist_ok.
If True, will not raise an error.
This can lead to files being overwritten, if desc is not set.

	nettsv (str can be nn-t or ijt.) – nn-t means networks are node-node x time.
ijt means daframs are ijt columns.

Methods Summary

	create_output_pipeline(runc_func, …[, …])

	Creates the directories of the saved file.

	get_aux_file(bidsfile[, filetype])

	Tries to automatically get auxiliary data for input files, and loads it

	get_run_options([for_selected])

	Returns the different function names that can be called using TenetoBIDS.run()

	get_selected_files([output])

	Uses information in selected_pipeline and the bids layout and shows the files that will be processed when calling TenetoBIDS.run().

	load_data([bids_filter])

	Returns data, default is the input data.

	load_events()

	Loads event data for selected files

	load_file(bidsfile)

	Aux function to load the data and sidecar from a BIDSFile

	run(run_func, input_params[, output_desc, …])

	Runs a runction on the selected files.

	troubleshoot(stepname, status)

	Prints ongoing info to assist with troubleshooting

	update_bids_filter(filter_addons)

	Updates TenetoBIDS.bids_filter

	update_bids_layout()

	Function that upddates to new bids l

Methods Documentation

	
create_output_pipeline(runc_func, output_pipeline_name, exist_ok=None)[source]

	Creates the directories of the saved file.

	Parameters

	
	output_pipeline (str) – name of output pipeline

	exist_ok (bool) – If False, will raise error if pipeline already exist_ok.
If True, will not raise an error.
This can lead to files being overwritten, if desc is not set.
If None, will use the exist_ok set during init.

	Returns

	bids_dir/teneto-[output_pipeline]/

	Return type

	Creates the output pipeline directory in

	
get_aux_file(bidsfile, filetype='confounds')[source]

	Tries to automatically get auxiliary data for input files, and loads it

	bidsfileBIDSDataFile or BIDSImageFile

	The BIDS file that the confound file is gong to be matched.

	filetypestring

	Can be confounds, events.
Specified if you want to get the confound or events data.

	
get_run_options(for_selected=True)[source]

	Returns the different function names that can be called using TenetoBIDS.run()

	Parameters

	for_selected (bool) – If True, only return run options for the selected files.
If False, returns all options.

	Returns

	options – a list of options that can be run.

	Return type

	str

	
get_selected_files(output=None)[source]

	Uses information in selected_pipeline and the bids layout and shows the files that will be processed when calling TenetoBIDS.run().

If you specify a particular output, it will tell you which files will get selected for that output

	
load_data(bids_filter=None)[source]

	Returns data, default is the input data.

	bids_filterdict

	default is None. If set, load data will load all files found by the bids_filter.
Any preset BIDS filter is used as well, but will get overwritten by this input.

	
load_events()[source]

	Loads event data for selected files

	
load_file(bidsfile)[source]

	Aux function to load the data and sidecar from a BIDSFile

	bidsfileBIDSDataFile or BIDSImageFile

	The BIDS file that the confound file is gong to be matched.

	
run(run_func, input_params, output_desc=None, output_pipeline_name=None, bids_filter=None, update_pipeline=True, exist_ok=None, troubleshoot=False)[source]

	Runs a runction on the selected files.

	Parameters

	
	run_func (str) – str should correspond to a teneto function.
So to run the funciton teneto.timeseries.derive_temporalnetwork
the input should be: ‘timeseries.derive_temporalnetwork’

	input_params (dict) – keyword and value pairing of arguments for the function being run.
The input data to each function will be located automatically.
This input_params does not need to include the input network.
For any other input that needs to be loaded loaded within the teneto_bidsstructure
(communities, events, confounds),
you can pass the value “bids” if they can be found within the current selected_pipeline.
If they are found within a different selected_pipeline, type “bids_[selected_pipeline]”.

	output_desc (str) – If none, no desc is used (removed any previous file)
If ‘keep’, then desc is preserved.
If any other str, desc is set to that string

	output_pipeline_name (str) – If set, then the data is saved in teneto_[functionname]_[output_pipeline_name].
If run_func is teneto.timeseries.derive_temporalnetwork and output_pipeline_name
is jackknife then then the pipeline the data is saved in is
teneto-generatetemporalnetwork_jackknife

	update_pipeline (bool) – If set to True (default), then the selected_pipeline updates to output of function

	exist_ok (bool) – If set to True, then overwrites direcotry is possible.

	troubleshoot (bool) – If True, prints out certain information during running.
Useful to run if reporting a bug.

	
troubleshoot(stepname, status)[source]

	Prints ongoing info to assist with troubleshooting

	
update_bids_filter(filter_addons)[source]

	Updates TenetoBIDS.bids_filter

	Parameters

	filter_addons (dict) – dictionary that updates TenetoBIDS.bids_filter

	
update_bids_layout()[source]

	Function that upddates to new bids l

TemporalNetwork

	
class TemporalNetwork(N=None, T=None, nettype=None, from_df=None, from_array=None, from_dict=None, from_edgelist=None, timetype=None, diagonal=False, timeunit=None, desc=None, starttime=None, nodelabels=None, timelabels=None, hdf5=False, hdf5path=None, forcesparse=False, dense_threshold=0.25)[source]

	Bases: object

A class for temporal networks.

This class allows to call different teneto functions within the class and store the network representation.

	Parameters

	
	N (int) – number of nodes in network

	T (int) – number of time-points in network

	nettype (str) – description of network. Can be: bu, bd, wu, wd where the letters stand for binary, weighted, undirected and directed.
Default is weighted and undirected.

	from_df (pandas df) – input data frame with i,j,t,[weight] columns

	from_array (array) – input data from an array with dimesnions node,node,time

	from_dict (dict) – input data is a contact sequence dictionary.

	from_edgelist (list) – input data is a list of lists where each item in main list consists of [i,j,t,[weight]].

	timetype (str) – discrete or continuous

	diagonal (bool) – if the diagonal should be included in the edge list.

	timeunit (str) – string (used in plots)

	desc (str) – string to describe network.

	startime (int) – integer represents time of first index.

	nodelabels (list) – list of labels for naming the nodes

	timelabels (list) – list of labels for time-points

	hdf5 (bool) – if true, pandas dataframe is stored and queried as a h5 file.

	hdf5path (str) – Where the h5 files is saved if hdf5 is True. If left unset, the default is ./teneto_temporalnetwork.h5

	forcesparse (bool) – When forsesparse if False (default),
if importing array and if dense_threshold% (default%) edges are present, tnet.network is an array.
If forsesparse is True, then this inhibts arrays being created.

	dense_threshold (float) – If forsesparse == False, what percentage (as a decimal) of edges need to be present in order for representation to be dense.

Methods Summary

	add_edge(edgelist)

	Adds an edge from network.

	binarize(threshold_type, threshold_level, …)

	Binarizes the network.

	calc_networkmeasure(networkmeasure, …)

	Calculate network measure.

	df_to_array([start_at])

	Turns datafram to array.

	drop_edge(edgelist)

	Removes an edge from network.

	generatenetwork(networktype, **networkparams)

	Generate a network

	get_network_when(**kwargs)

	

	hdf5_setup(hdf5path)

	

	network_from_array(array[, forcesparse, …])

	Defines a network from an array.

	network_from_df(df)

	Defines a network from an array.

	network_from_dict(contact)

	

	network_from_edgelist(edgelist)

	Defines a network from an array.

	plot(plottype[, ij, t, ax])

	

Methods Documentation

	
add_edge(edgelist)[source]

	Adds an edge from network.

	Parameters

	edgelist (list) – a list (or list of lists) containing the i,j and t indicies to be added. For weighted networks list should also contain a ‘weight’ key.

	Returns

	

	Return type

	Updates TenetoBIDS.network dataframe with new edge

	
binarize(threshold_type, threshold_level, **kwargs)[source]

	Binarizes the network.

	Parameters

	
	threshold_type (str) – What type of thresholds to make binarization. Options: ‘rdp’, ‘percent’, ‘magnitude’.

	threshold_level (str) – Paramter dependent on threshold type.
If ‘rdp’, it is the delta (i.e. error allowed in compression).
If ‘percent’, it is the percentage to keep (e.g. 0.1, means keep 10% of signal).
If ‘magnitude’, it is the amplitude of signal to keep.

	teneto.utils.binarize for kwarg arguments. (See) –

	Returns

	

	Return type

	Updates tnet.network to be binarized

	
calc_networkmeasure(networkmeasure, **measureparams)[source]

	Calculate network measure.

	Parameters

	
	networkmeasure (str) – Function to call. Functions available are in teneto.networkmeasures

	measureparams (kwargs) – kwargs for teneto.networkmeasure.[networkmeasure]

	
df_to_array(start_at='auto')[source]

	Turns datafram to array.
See teneto.utils.df_to_array for more information.

	Parameters

	start_at (str) – ‘min’ or ‘zero’.
If auto, the 0th time-point is tnet.starttime.
If min, the 0th time-point in the array is the minimum time-point found.
If zero, the 0th time-point in the array is 0.

	
drop_edge(edgelist)[source]

	Removes an edge from network.

	Parameters

	edgelist (list) – a list (or list of lists) containing the i,j and t indicies to be removes.

	Returns

	

	Return type

	Updates TenetoBIDS.network dataframe

	
generatenetwork(networktype, **networkparams)[source]

	Generate a network

	Parameters

	
	networktype (str) – Function to call. Functions available are in teneto.generatenetwork

	measureparams (kwargs) – kwargs for teneto.generatenetwork.[networktype]

	Returns

	

	Return type

	TenetoBIDS.network is made with the generated network.

	
get_network_when(**kwargs)[source]

	

	
hdf5_setup(hdf5path)[source]

	

	
network_from_array(array, forcesparse=False, dense_threshold=0.25)[source]

	Defines a network from an array.

	Parameters

	
	array (array) – 3D numpy array.

	forcespace (bool) – If true, will always make the array sparse (can be slow). If false, dense form will be kept
if more than dense_threshold% of edges are present.

	dense_threshold (float) – Threshold for when array representation is kept as an array instead of sparse.
Only done if forcesparse is False.

	
network_from_df(df)[source]

	Defines a network from an array.

	Parameters

	array (array) – Pandas dataframe. Should have columns: ‘i’, ‘j’, ‘t’ where i and j are node indicies and t is the temporal index.
If weighted, should also include ‘weight’. Each row is an edge.

	
network_from_dict(contact)[source]

	

	
network_from_edgelist(edgelist)[source]

	Defines a network from an array.

	Parameters

	edgelist (list of lists.) – A list of lists which are 3 or 4 in length.
For binary networks each sublist should be [i, j ,t] where i and j are node indicies and t is the temporal index.
For weighted networks each sublist should be [i, j, t, weight].

	
plot(plottype, ij=None, t=None, ax=None, **plotparams)[source]

	

TenetoWorkflow

	
class TenetoWorkflow(remove_nonterminal_output=True)[source]

	Bases: object

Methods Summary

	add_node(nodename, func[, depends_on, params])

	Adds a node to the workflow graph.

	calc_runorder()

	Calculate the run order of the different nodes on the graph.

	delete_output_from_level(level)

	Delete the output found after calling TenetoWorkflow.run().

	make_workflow_figure([fig, ax])

	Creates a figure depicting the workflow figure.

	remove_node(nodename)

	Remove a node from the graph.

	run()

	Runs the entire graph.

Methods Documentation

	
add_node(nodename, func, depends_on=None, params=None)[source]

	Adds a node to the workflow graph.

	Parameters

	
	nodename (str) – Name of the node

	func (str) – The function that is to be called.
The alternatives here are ‘TemporalNetwork’ or ‘TenetoBIDS’,
or any of the functions that can be called within these classes.

	depends_on (str) – which step the node depends on. If empty, is considered to preceed
the previous step. If ‘isroot’ is specified, it is considered an input variable.

	params (dict) – Parameters that are passed into func.

Note

These functions are not run until TenetoWorkflow.run() is called.

	
calc_runorder()[source]

	Calculate the run order of the different nodes on the graph.

	
delete_output_from_level(level)[source]

	Delete the output found after calling TenetoWorkflow.run().

	
make_workflow_figure(fig=None, ax=None)[source]

	Creates a figure depicting the workflow figure.

	Parameters

	
	fig (matplotlib) –

	ax (matplotlib) –

	fig is used as input, ax should be too. (if) –

	Returns

	fig, ax – matplotlib figure and axis

	Return type

	matplotlib

	
remove_node(nodename)[source]

	Remove a node from the graph.

	Parameters

	nodename (str) – Name of node that is to be removed.

	
run()[source]

	Runs the entire graph.

teneto.communitydetection

Louvain

	
make_consensus_matrix(com_membership, th=0.5)[source]

	
Makes the consensus matrix.

From multiple iterations, finds a consensus partition.

	.

	
	com_membershiparray

	Shape should be node, time, iteration.

	thfloat

	threshold to cancel noisey edges

	Darray

	consensus matrix

	
make_temporal_consensus(com_membership)[source]

	Matches community labels accross time-points.

Jaccard matching is in a greedy fashiong. Matching the largest community at t with the community at t-1.

	Parameters

	com_membership (array) – Shape should be node, time.

	Returns

	D – temporal consensus matrix using Jaccard distance

	Return type

	array

	
temporal_louvain(tnet, resolution=1, intersliceweight=1, n_iter=100, negativeedge='ignore', randomseed=None, consensus_threshold=0.5, temporal_consensus=True, njobs=1)[source]

	Louvain clustering for a temporal network.

	Parameters

	
	tnet (array, dict, TemporalNetwork) – Input network

	resolution (int) – resolution of Louvain clustering ($gamma$)

	intersliceweight (int) – interslice weight of multilayer clustering ($omega$). Must be positive.

	n_iter (int) – Number of iterations to run louvain for

	randomseed (int) – Set for reproduceability

	negativeedge (str) – If there are negative edges, what should be done with them.
Options: ‘ignore’ (i.e. set to 0). More options to be added.

	consensus (float (0.5 default)) – When creating consensus matrix to average over number of iterations, keep values when the consensus is this amount.

	Returns

	communities – node,time array of community assignment

	Return type

	array (node,time)

Notes

References

teneto.communitymeasures

teneto.communitymeasures Package

Functions to quantify temporal communities

Functions

	flexibility(communities)

	Amount a node changes community

	allegiance(community)

	Computes allience of communities.

	recruitment(temporalcommunities, …)

	Calculates recruitment in relation to static communities.

	integration(temporalcommunities, …)

	Calculates the integration coefficient for each node.

	promiscuity(communities)

	Calculates promiscuity of communities.

	persistence(communities[, calc])

	Persistence is the proportion of consecutive time-points that a temporal community is in the same community at the next time-point

flexibility

	
flexibility(communities)[source]

	Amount a node changes community

	Parameters

	communities (array) – Community array of shape (node,time)

	Returns

	flex – Size with the flexibility of each node.

	Return type

	array

Notes

Flexbility calculates the number of times a node switches its community label during a time series [flex-1].
It is normalized by the number of possible changes which could occur.
It is important to make sure that the different community labels accross time points are not artbirary.

References

	flex-1

	Bassett, DS, Wymbs N, Porter MA, Mucha P, Carlson JM, Grafton ST.
Dynamic reconfiguration of human brain networks during learning.
PNAS, 2011, 108(18):7641-6.

allegiance

	
allegiance(community)[source]

	Computes allience of communities.

The allegiance matrix with values representing the probability that
nodes i and j were assigned to the same community by time-varying clustering methods.[alleg-1]_

	Parameters

	community (array) – array of community assignment of size node,time

	Returns

	
	P (array) – module allegiance matrix, with P_ij probability that area i and j are in the same community

	Reference

	———-

	.. [alleg-1] – Bassett, et al. (2013)
“Robust detection of dynamic community structure in networks”, Chaos, 23, 1

recruitment

	
recruitment(temporalcommunities, staticcommunities)[source]

	Calculates recruitment in relation to static communities.

Calculates recruitment coefficient for each node.
Recruitment coefficient is the average probability of nodes from the
same static communities being in the same temporal communities at other time-points or during different tasks.

	temporalcommunitiesarray

	temporal communities vector (node,time)

	staticcommunitiesarray

	Static communities vector for each node

	recruitarray

	recruitment coefficient for each node

	recruit-1

	Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton.
Learning-Induced Autonomy of Sensorimotor Systems.
Nat Neurosci. 2015 May;18(5):744-51.

	recruit-2

	Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional
Cartography of Cognitive Systems.
PLoS Comput Biol. 2015 Dec 2;11(12):e1004533.

integration

	
integration(temporalcommunities, staticcommunities)[source]

	Calculates the integration coefficient for each node. Measures the average probability
that a node is in the same community as nodes from other systems.

	temporalcommunitiesarray

	temporal communities vector (node,time)

	staticcommunitiesarray

	Static communities vector for each node

	integration_coeffarray

	integration coefficient for each node

Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton.
Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51.

Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett.
A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec
2;11(12):e1004533.

promiscuity

	
promiscuity(communities)[source]

	Calculates promiscuity of communities.

Promiscuity calculates the number of communities each node is a member of.
0 entails only 1 community. 1 entails all communities [prom-1].

	Parameters

	communities (array) – temporal communities labels of type (node,time).
Temporal communities labels should be non-trivial through snapshots (i.e. temporal consensus clustering should be run)

	Returns

	promiscuity_coeff – promiscuity of each node

	Return type

	array

References

	prom-1

	Papadopoulos, Lia, et al.
“Evolution of network architecture in a granular material under compression.”
Physical Review E 94.3 (2016): 032908.

persistence

	
persistence(communities, calc='global')[source]

	Persistence is the proportion of consecutive time-points that a temporal community is in the same community at the next time-point

	Parameters

	
	communities (array) – temporal communities of type: node,time (singlelabel) or node,node,time (for multilabel) communities

	calc (str) – can be ‘global’, ‘time’, or ‘node’

	Returns

	persit_coeff – the percentage of nodes that calculate the overall persistence (calc=global), or each node (calc=node), or for each time-point (calc=time)

	Return type

	array

References

Bazzi, Marya, et al. “Community detection in temporal multilayer networks, with an application to correlation networks.” Multiscale Modeling & Simulation 14.1 (2016): 1-41.

Note

Bazzi et al present a non-normalized version with the global output.

teneto.networkmeasures

teneto.networkmeasures Package

Imports from networkmeasures

Functions

	temporal_degree_centrality(tnet[, axis, …])

	Temporal degree of network.

	shortest_temporal_path(tnet[, steps_per_t, …])

	Shortest temporal path

	temporal_closeness_centrality([tnet, paths])

	Returns temporal closeness centrality per node.

	intercontacttimes(tnet)

	Calculates the intercontacttimes of each edge in a network.

	volatility(tnet[, distance_func, calc, …])

	Volatility of temporal networks.

	bursty_coeff(data[, calc, nodes, …])

	Calculates the bursty coefficient.[1][2]

	fluctuability(netin[, calc])

	Fluctuability of temporal networks.

	temporal_efficiency([tnet, paths, calc])

	Returns temporal efficiency estimate.

	temporal_efficiency([tnet, paths, calc])

	Returns temporal efficiency estimate.

	reachability_latency([tnet, paths, rratio, calc])

	Reachability latency.

	sid(tnet, communities[, axis, calc, decay])

	Segregation integration difference (SID).

	temporal_participation_coeff(tnet[, …])

	Calculates the temporal participation coefficient

	topological_overlap(tnet[, calc])

	Topological overlap quantifies the persistency of edges through time.

	local_variation(data)

	Calculates the local variaiont of inter-contact times.

	temporal_betweenness_centrality([tnet, …])

	Returns temporal betweenness centrality per node.

temporal_degree_centrality

	
temporal_degree_centrality(tnet, axis=0, calc='overtime', communities=None, decay=0, ignorediagonal=True)[source]

	Temporal degree of network.

The sum of all connections each node has through time
(either per timepoint or over the entire temporal sequence).

	Parameters

	
	net (array, dict) – Temporal network input (graphlet or contact). Can have nettype: ‘bu’, ‘bd’, ‘wu’, ‘wd’

	axis (int) – Dimension that is returned 0 or 1 (default 0).
Note, only relevant for directed networks.
i.e. if 0, node i has Aijt summed over j and t.
and if 1, node j has Aijt summed over i and t.

	calc (str) – Can be following alternatives:

’overtime’ : returns a 1 x node vector. Returns the degree/stregnth over all time points.

’pertime’ : returns a node x time array. Returns the degree/strength per time point.

’module_degree_zscore’ : returns the Z-scored within community degree centrality
(communities argument required). This is done for each time-point
i.e. ‘pertime’ returns static degree centrality per time-point.

	ignorediagonal (bool) – if True, diagonal is made to 0.

	communities (array (Nx1)) – Vector of community assignment.
If this is given and calc=’pertime’, then the strength within and
between each communities is returned.
(Note, this is not technically degree centrality).

	decay (int) – if calc = ‘pertime’, then decay is possible where the centrality of
the previous time point is carried over to the next time point but decays
at a value of e^decay such that $D_d(t+1) = e^{-decay}D_d(t) + D(t+1)$.
If decay is 0 then the final D will equal D when calc=’overtime’,
if decay = inf then this will equal calc=’pertime’.

	Returns

	D – temporal degree centrality (nodal measure).
Array is 1D (‘overtime’), 2D (‘pertime’, ‘module_degree_zscore’),
or 3D (‘pertime’ + communities (non-nodal/community measures)).

	Return type

	array

Notes

When the network is weighted, this could also be called “temporal strength”
or “temporal strength centrality”.
This is a simple extension of the static definition.
At times this has been defined slightly differently.
Here we followed the definitions in [Degree-1] or [Degree-2].
There are however many authors prior to this that have used temporal degree centrality.

There are two basic versions of temporal degree centrality implemented:
the average temporal degree centrality (calc='overtime')
and temporal degree centrality (calc='pertime').

When calc='pertime':

\[D_{it} = \sum_j A_{ijt}\]

where A is the multi-layer connectivity matrix of the temporal network.

This entails that \(D_{it}\) is the sum of a node i’s degree/strength at t.
This has also been called the instantaneous degree centrality [Degree-2].

When calc='overtime':

\[D_{i} = \sum_t\sum_j A_{ijt}\]

i.e. \(D_{i}\) is the sum of a node i’s degree/strength over all time points.

There are some additional options which can modify the estimate.
One way is to add a decay term.
This entails that ..math::D_{it}, uses some of the previous time-points estimate.
An exponential decay is used here.

\[D_{it} = e^{-b} D_{i(t-1)} + \sum_j A_{ijt}\]

where b is the deay parameter specified in the function.
This, to my knowledge, was first introdueced by [Degree-2].

References

	Degree-1

	Thompson, et al (2017). From static to temporal network theory:
Applications to functional brain connectivity.
Network Neuroscience, 1(2), 69-99.
[Link [https://www.mitpressjournals.org/doi/full/10.1162/netn_a_00011]]

	Degree-2(1,2,3)

	Masuda, N., & Lambiotte, R. (2016). A Guidance to Temporal Networks.
[Link to book’s publisher [https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001]]

shortest_temporal_path

	
shortest_temporal_path(tnet, steps_per_t='all', i=None, j=None, it=None, minimise='temporal_distance')[source]

	Shortest temporal path

	Parameters

	
	tnet (tnet obj, array or dict) – input network. nettype: bu, bd.

	steps_per_t (int or str) – If str, should be ‘all’.
How many edges can be travelled during a single time-point.

	i (list) – List of node indicies to restrict analysis. These are nodes the paths start from. Default is all nodes.

	j (list) – List of node indicies to restrict analysis. There are nodes the paths end on. Default is all nodes.

	it (None, int, list) – Time points for parts.
Either None (default) which takes all time points,
an integer to indicate which time point to start at,
or a list of time-points that is included in analysis
(including end time-point).

	minimise (str) – Can be “temporal_distance”, returns the path that has the smallest temporal distance.
It is possible there can be a path that is a smaller
topological distance (this option currently not available).

	Returns

	paths – Dataframe consisting of information about all the paths found.

	Return type

	pandas df

Notes

The shortest temporal path calculates the temporal and topological distance there to be a path between nodes.

The argument steps_per_t allows for multiple nodes to be travelled per time-point.

Topological distance is the number of edges that are travelled. Temporal distance is the number of time-points.

This function returns the path that is the shortest temporal distance away.

Examples

Let us start by creating a small network.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import teneto
>>> G = np.zeros([4, 4, 3])
>>> G[0, 1, [0, 2]] = 1
>>> G[0, 3, [2]] = 1
>>> G[1, 2, [1]] = 1
>>> G[2, 3, [1]] = 1

Let us look at this network to see what is there.

>>> fig, ax = plt.subplots(1)
>>> ax = teneto.plot.slice_plot(G, ax, nodelabels=[0,1,2,3], timelabels=[0,1,2], cmap='Set2')
>>> plt.tight_layout()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/teneto-networkmeasures-shortest_temporal_path-1.png]

Here we can visualize what the shortest paths are.
Let us start by starting at
node 0 we want to find the path to node 3, starting at time 0. To do this we write:

>>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0)
>>> sp['temporal-distance']
0 2
Name: temporal-distance, dtype: int64
>>> sp['topological-distance']
0 3
Name: topological-distance, dtype: int64
>>> sp['path includes']
0 [[0, 1], [1, 2], [2, 3]]
Name: path includes, dtype: object

Here we see that the shortest path takes 3 steps (topological distance of 3) at 2 time points.

It starts by going from node 0 to 1 at t=0, then 1 to 2 and 2 to 3 at t=1.
We can see all the nodes
that were travelled in the “path includes” list.

In the above example, it was possible to traverse multiple edges at a single time-point.
It is possible to restrain that by setting the steps_per_t argument

>>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0, steps_per_t=1)
>>> sp['temporal-distance']
0 3
Name: temporal-distance, dtype: int64
>>> sp['topological-distance']
0 1
Name: topological-distance, dtype: int64
>>> sp['path includes']
0 [[0, 3]]
Name: path includes, dtype: object

Here we see that the path is now only one edge, 0 to 3 at t=2.
The quicker path is no longer possible.

temporal_closeness_centrality

	
temporal_closeness_centrality(tnet=None, paths=None)[source]

	Returns temporal closeness centrality per node.

Temporal closeness centrlaity is the sum of a node’s
average temporal paths with all other nodes.

	Parameters

	
	tnet (array, dict, object) – Temporal network input with nettype: ‘bu’, ‘bd’.

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

Note

Only one input (tnet or paths) can be supplied to the function.

	Returns

	temporal closness centrality (nodal measure)

	Return type

	close: array

Notes

Temporal closeness centrality is defined in [Close-1]:

\[\begin{split}C^T_{i} = {{1} \over {N-1}}\sum_j{1\over\\tau_{ij}}\end{split}\]

Where \(\\tau_{ij}\) is the average temporal paths between node i and j.

Note, there are multiple different types of temporal distance measures
that can be used in temporal networks.
If a temporal network is used as input (i.e. not the paths), then teneto
uses shortest_temporal_path() to calculates the shortest paths.
See shortest_temporal_path() for more details.

	Close-1

	Pan, R. K., & Saramäki, J. (2011).
Path lengths, correlations, and centrality in temporal networks.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(1).
[`Link https://doi.org/10.1103/PhysRevE.84.016105`_]

intercontacttimes

	
intercontacttimes(tnet)[source]

	Calculates the intercontacttimes of each edge in a network.

	Parameters

	tnet (array, dict) – Temporal network (craphlet or contact). Nettype: ‘bu’,

	Returns

	contacts – Intercontact times as numpy array in dictionary. contacts[‘intercontacttimes’]

	Return type

	dict

Notes

The inter-contact times is calculated by the time between consequecutive “active” edges (where active means
that the value is 1 in a binary network).

Examples

This example goes through how inter-contact times are calculated.

>>> import teneto
>>> import numpy as np

Make a network with 2 nodes and 4 time-points with 4 edges spaced out.

>>> G = np.zeros([2,2,10])
>>> edge_on = [1,3,5,9]
>>> G[0,1,edge_on] = 1

The network visualised below make it clear what the inter-contact times are between the two nodes:

(Source code, png, hires.png, pdf)

[image: ../_images/teneto-networkmeasures-intercontacttimes-1.png]

Calculating the inter-contact times of these edges becomes: 2,2,4 between nodes 0 and 1.

>>> ict = teneto.networkmeasures.intercontacttimes(G)

The function returns a dictionary with the icts in the key: intercontacttimes. This is of the size NxN.
So the icts between nodes 0 and 1 are found by:

>>> ict['intercontacttimes'][0,1]
array([2, 2, 4])

volatility

	
volatility(tnet, distance_func='default', calc='overtime', communities=None, event_displacement=None)[source]

	Volatility of temporal networks.

Volatility is the average distance between consecutive time points
(difference is caclualted either globally or per edge).

	Parameters

	
	tnet (array or dict) – temporal network input (graphlet or contact). Nettype: ‘bu’,’bd’,’wu’,’wd’

	D (str) – Distance function. Following options available: ‘default’, ‘hamming’, ‘euclidean’.
(Default implies hamming for binary networks, euclidean for weighted).

	calc (str) – Version of volaitility to caclulate. Possibilities include:
‘overtime’ - (default): the average distance of all nodes for each consecutive time point).
‘edge’ - average distance between consecutive time points for each edge).
Takes considerably longer
‘node’ - (i.e. returns the average per node output when calculating volatility per ‘edge’).
‘pertime’ - returns volatility per time point
‘communities’ - returns volatility per communitieswork id (see communities).
Also is returned per time-point and this may be changed in the future
(additional options are then required)
‘event_displacement’ - calculates the volatility from a specified point.
Returns time-series.

	communities (array) – Array of indicies for community (eiter (node) or (node,time) dimensions).

	event_displacement (int) – if calc = event_displacement specify the temporal index.
All other time-points are calculated in relation to this time point.

Notes

Volatility calculates the difference between network snapshots.

\[V_t = D(G_t,G_{t+1})\]

Where D is some distance function (e.g. Hamming distance for binary matrices).

V can be calculated for the entire network (global),
but can also be calculated for individual edges, nodes or given a community vector.

Index of communities are returned “as is” with a shape of:
(max(communities)+1, max(communities)+1).
So if the indexes used are [1,2,3,5], V.shape==(6,6).
The returning V[1,2] will correspond indexes 1 and 2.
And missing index (e.g. here 0 and 4 will be NANs in rows and columns).
If this behaviour is unwanted, call clean_communitiesdexes first.

Examples

Import everything needed.

>>> import teneto
>>> import numpy
>>> np.random.seed(1)
>>> tnet = teneto.TemporalNetwork(nettype='bu')

Here we generate a binary network where edges have a 0.5 change of going “on”, and once on a 0.2 change to go “off”

>>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2))

Calculate the volatility

>>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
0.5555555555555556

If we change the probabilities to instead be certain edges disapeared the time-point after the appeared:

>>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1))

This will make a more volatile network

>>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
0.1111111111111111

We can calculate the volatility per time instead

>>> vol_time = tnet.calc_networkmeasure('volatility', calc='pertime', distance_func='hamming')
>>> len(vol_time)
9
>>> vol_time[0]
0.3333333333333333

Or per node:

>>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func='hamming')
>>> vol_node
array([0.07407407, 0.07407407, 0.07407407])

Here we see the volatility for each node was the same.

It is also possible to pass a community vector.
The function will return volatility both within and between each community.
So the following has two communities:

>>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func='hamming')
>>> vol_com.shape
(2, 2, 9)
>>> vol_com[:,:,0]
array([[nan, 0.5],
 [0.5, 0.]])

And we see that, at time-point 0, there is some volatility between community 0 and 1.
Further, there is no volatility within community 1.
The reason for nan appearing is due to there only being 1 node in community 0.

vol : array

bursty_coeff

	
bursty_coeff(data, calc='edge', nodes='all', communities=None, threshold_type=None, threshold_level=None, threshold_params=None)[source]

	Calculates the bursty coefficient.[1][2]

	Parameters

	
	data (array, dict) – This is either (1) temporal network input with nettype: ‘bu’, ‘bd’.
(2) dictionary of ICTs (output of intercontacttimes).
(3) temporal network input with nettype: ‘wu’, ‘wd’.
If weighted, you must also specify threshold_type and threshold_value which will make it binary.

	calc (str) – Caclulate the bursty coeff over what.
Options include ‘edge’: calculate B on all ICTs between node i and j.
(Default); ‘node’: caclulate B on all ICTs connected to node i.;
‘communities’: calculate B for each communities (argument communities then required);
‘meanEdgePerNode’: first calculate ICTs between i and j, then take the mean over all j.

	nodes (list or str) – Options: ‘all’: do for all nodes (default) or list of node indexes to calculate.

	communities (array, optional) – None (default) or Nx1 vector of communities assignment. This returns a “centrality” per communities instead of per node.

	threshold_type (str, optional) – If input is weighted. Specify binarizing threshold type. See teneto.utils.binarize

	threshold_level (str, optional) – If input is weighted. Specify binarizing threshold level. See teneto.utils.binarize

	threhsold_params (dict) – If input is weighted. Dictionawy with kwargs for teneto.utils.binarize

	Returns

	B – Bursty coefficienct per (edge or node measure).

	Return type

	array

Notes

The burstiness coefficent, B, is defined in refs [1,2] as:

\[B = {{\sigma_{ICT} - \mu_{ICT}} \over {\sigma_{ICT} + \mu_{ICT}}}\]

Where \(\sigma_{ICT}\) and \(\mu_{ICT}\) are the standard deviation and
mean of the inter-contact times respectively (see teneto.networkmeasures.intercontacttimes)

When B > 0, indicates bursty intercontact times.
When B < 0, indicates periodic/tonic intercontact times.
When B = 0, indicates random.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Now create 2 temporal network of 2 nodes and 60 time points.
The first has periodict edges, repeating every other time-point:

>>> G_periodic = np.zeros([2, 2, 60])
>>> ts_periodic = np.arange(0, 60, 2)
>>> G_periodic[:,:,ts_periodic] = 1

The second has a more bursty pattern of edges:

>>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
>>> G_bursty = np.zeros([2, 2, 60])
>>> G_bursty[:,:,ts_bursty] = 1

The two networks look like this:

(Source code)

Now we call bursty_coeff.

>>> B_periodic = teneto.networkmeasures.bursty_coeff(G_periodic)
>>> B_periodic
array([[nan, -1.],
 [-1., nan]])

Above we can see that between node 0 and 1, B=-1 (the diagonal is nan).
Doing the same for the second example:

>>> B_bursty = teneto.networkmeasures.bursty_coeff(G_bursty)
>>> B_bursty
array([[nan, 0.13311003],
 [0.13311003, nan]])

gives a positive value, indicating the inter-contact times between node 0 and 1 is bursty.

References

	1

	Goh, KI & Barabasi, AL (2008)
Burstiness and Memory in Complex Systems. EPL (Europhysics Letters),
81: 4 [Link [https://arxiv.org/pdf/physics/0610233.pdf]]

	2

	Holme, P & Saramäki J (2012) Temporal networks.
Physics Reports. 519: 3. [Link [https://arxiv.org/pdf/1108.1780.pdf]]
(Discrete formulation used here)

fluctuability

	
fluctuability(netin, calc='overtime')[source]

	Fluctuability of temporal networks.

This is the variation of the network’s edges over time. [fluct-1]
This is the unique number of edges through time divided by the overall
number of edges.

	Parameters

	
	netin (array or dict) – Temporal network input (graphlet or contact)
(nettype: ‘bd’, ‘bu’, ‘wu’, ‘wd’)

	calc (str) – Version of fluctuabiility to calcualte. ‘overtime’

	Returns

	fluct – Fluctuability

	Return type

	array

Notes

Fluctuability quantifies the variability of edges.
Given x number of edges, F is higher when those are repeated edges among
a smaller set of edges and lower when there are distributed across more edges.

\[F = {{\sum_{i,j} H_{i,j}} \over {\sum_{i,j,t} G_{i,j,t}}}\]

where \(H_{i,j}\) is a binary matrix where it is 1 if there is at
least one t such that G_{i,j,t} = 1 (i.e. at least one temporal edge exists).

F is not normalized which makes comparisions of F across very different
networks difficult (could be added).

Examples

This example compares the fluctability of two different networks with the same number of edges.
Below two temporal networks, both with 3 nodes and 3 time-points.
Both get 3 connections.

>>> import teneto
>>> import numpy as np
>>> # Manually specify node (i,j) and temporal (t) indicies.
>>> ind_highF_i = [0,0,1]
>>> ind_highF_j = [1,2,2]
>>> ind_highF_t = [1,2,2]
>>> ind_lowF_i = [0,0,0]
>>> ind_lowF_j = [1,1,1]
>>> ind_lowF_t = [0,1,2]
>>> # Define 2 networks below and set above edges to 1
>>> G_highF = np.zeros([3,3,3])
>>> G_lowF = np.zeros([3,3,3])
>>> G_highF[ind_highF_i,ind_highF_j,ind_highF_t] = 1
>>> G_lowF[ind_lowF_i,ind_lowF_j,ind_lowF_t] = 1

The two different networks look like this:

(Source code)

Now calculate the fluctability of the two networks above.

>>> F_high = teneto.networkmeasures.fluctuability(G_highF)
>>> F_high
1.0
>>> F_low = teneto.networkmeasures.fluctuability(G_lowF)
>>> F_low
0.3333333333333333

Here we see that the network with more unique connections has the higher fluctuability.

	fluct-1

	Thompson et al (2017)
“From static to temporal network theory applications to
functional brain connectivity.” Network Neuroscience, 2:
1. p.69-99
[Link [https://www.mitpressjournals.org/doi/abs/10.1162/NETN_a_00011]]

temporal_efficiency

	
temporal_efficiency(tnet=None, paths=None, calc='overtime')[source]

	Returns temporal efficiency estimate. BU networks only.

	Parameters

	
	should be either tnet or paths. (Input) –

	data (array or dict) – Temporal network input (graphlet or contact). nettype: ‘bu’, ‘bd’.

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

	calc (str) – Options: ‘overtime’ (default) - measure averages over time and nodes;
‘node’ or ‘node_from’ average over nodes (i) and time. Giving average efficiency for i to j;
‘node_to’ measure average over nodes j and time;

Giving average efficiency using paths to j from i;

	Returns

	E – Global temporal efficiency

	Return type

	array

temporal_efficiency

	
temporal_efficiency(tnet=None, paths=None, calc='overtime')[source]

	Returns temporal efficiency estimate. BU networks only.

	Parameters

	
	should be either tnet or paths. (Input) –

	data (array or dict) – Temporal network input (graphlet or contact). nettype: ‘bu’, ‘bd’.

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

	calc (str) – Options: ‘overtime’ (default) - measure averages over time and nodes;
‘node’ or ‘node_from’ average over nodes (i) and time. Giving average efficiency for i to j;
‘node_to’ measure average over nodes j and time;

Giving average efficiency using paths to j from i;

	Returns

	E – Global temporal efficiency

	Return type

	array

reachability_latency

	
reachability_latency(tnet=None, paths=None, rratio=1, calc='global')[source]

	Reachability latency. This is the r-th longest temporal path.

	Parameters

	
	data (array or dict) – Can either be a network (graphlet or contact), binary unidrected only.
Alternative can be a paths dictionary (output of teneto.networkmeasure.shortest_temporal_path)

	rratio (float (default: 1)) – reachability ratio that the latency is calculated in relation to.
Value must be over 0 and up to 1.
1 (default) - all nodes must be reached.
Other values (e.g. .5 imply that 50% of nodes are reached)
This is rounded to the nearest node inter.
E.g. if there are 6 nodes [1,2,3,4,5,6], it will be node 4 (due to round upwards)

	calc (str) – what to calculate. Alternatives: ‘global’ entire network; ‘nodes’: for each node.

	Returns

	reach_lat – Reachability latency

	Return type

	array

Notes

Reachability latency calculates the time it takes for the paths.

sid

	
sid(tnet, communities, axis=0, calc='overtime', decay=0)[source]

	Segregation integration difference (SID). An estimation of each community or global difference of within versus between community strength.[sid-1]_

	Parameters

	
	tnet (array, dict) – Temporal network input (graphlet or contact). Allowerd nettype: ‘bu’, ‘bd’, ‘wu’, ‘wd’

	communities (array) – a Nx1 vector or NxT array of community assignment.

	axis (int) – Dimension that is returned 0 or 1 (default 0).
Note, only relevant for directed networks.
i.e. if 0, node i has Aijt summed over j and t.
and if 1, node j has Aijt summed over i and t.

	calc (str) – ‘overtime’ returns SID over time (a 1 x community vector) (default);

’community_pairs’ returns a community x community x time matrix, which is the SID for each community pairing;

’community_avg’ (returns a community x time matrix). Which is the normalized average of each community to all other communities.

’community_pairs_norm’ (returns a community x time matrix). Which is the normalized average of each community pair. Each pair is normalized to the average of both communities in the pair.

	decay (int) – if calc = ‘community_pairs’ or ‘community_avg’, then decay is possible where the centrality of
the previous time point is carried over to the next time point but decays
at a value of e^decay such that the temporal centrality measure becomes: $D(t+1) = e^{-decay}D(t) + D(t+1)$.

	Returns

	sid – segregation-integration difference. Format: 2d or 3d numpy array (depending on calc) representing (community,community,time) or (community,time)

	Return type

	array

Notes

SID tries to quantify if there is more segergation or intgration compared to other time-points.
If SID > 0, then there is more segregation than usual. If SID < 0, then there is more integration than usual.

There are three different variants of SID, one is a global measure (calc=’overtime’), the second is a value per community (calc=’community_avg’),
the third is a value for each community-community pairing (calc=’community_pairs’).

First we calculate the temporal strength for each edge. This is calculate by

\[S_{i,t} = \sum_j G_{i,j,t}\]

The pairwise SID, when the network is undirected, is calculated by

\[SID_{A,B,t} = ({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_B}}) S_{A,B,t})\]

Where \(S_{A,t}\) is the average temporal strength at time-point t for community A. \(N_A\) is the number of nodes in community A.

When calculating the SID for a community, it is calculated byL

\[SID_{A,t} = \sum_b^C({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_b}}) S_{A,b,t})\]

Where C is the number of communities.

When calculating the SID globally, it is calculated byL

\[SID_{t} = \sum_a^C\sum_b^C({2 \over {N_a (N_a - 1)}}) S_{A,t} - ({{1} \over {N_a * N_b}}) S_{a,b,t})\]

References

	sid-1

	Fransson et al (2018) Brain network segregation and integration during an epoch-related working memory fMRI experiment.
Neuroimage. 178. [Link [https://www.sciencedirect.com/science/article/pii/S1053811918304476]]

temporal_participation_coeff

	
temporal_participation_coeff(tnet, communities=None, decay=None, removeneg=False)[source]

	Calculates the temporal participation coefficient

Temporal participation coefficient is a measure of diversity of connections across communities for individual nodes.

	Parameters

	
	tnet (array, dict) – graphlet or contact sequence input. Only positive matrices considered.

	communities (array) – community vector. Either 1D (node) community index or 2D (node,time).

	removeneg (bool (default false)) – If true, all values < 0 are made to be 0.

	Returns

	P – participation coefficient

	Return type

	array

Notes

Static participatoin coefficient is:

\[P_i = 1 - \sum_s^{N_M}({{k_{is}}\over{k_i}})^2\]

Where s is the index of each community (\(N_M\)).
\(k_i\) is total degree of node.
And \(k_{is}\) is degree of connections within community.[part-1]_

This “temporal” version only loops through temporal snapshots and calculates \(P_i\) for each t.

If directed, function sums axis=1,
so tnet may need to be transposed before hand depending on what type of directed part_coef you are interested in.

References

	part-1

	Guimera et al (2005) Functional cartography of complex metabolic networks.
Nature. 433: 7028, p895-900. [Link [http://doi.org/10.1038/nature03288]]

topological_overlap

	
topological_overlap(tnet, calc='pertime')[source]

	Topological overlap quantifies the persistency of edges through time.

If two consequtive time-points have similar edges, this becomes high (max 1).
If there is high change, this becomes 0.

References: [topo-1], [topo-2]

	Parameters

	
	tnet (array, dict) – graphlet or contact sequence input. Nettype: ‘bu’.

	calc (str) – which version of topological overlap to calculate:
‘node’ - calculates for each node, averaging over time.
‘pertime’ - (default) calculates for each node per time points.
‘overtime’ - calculates for each node per time points.

	Returns

	topo_overlap – if calc = ‘pertime’, array is (node,time) in size.
if calc = ‘node’, array is (node) in size.
if calc = ‘overtime’, array is (1) in size. The final time point returns as nan.

	Return type

	array

Notes

When edges persist over time, the topological overlap increases.
It can be calculated as a global valu, per node, per node-time.

When calc=’pertime’, then the topological overlap is:

\[TopoOverlap_{i,t} = {\sum_j G_{i,j,t} G_{i,j,t+1}
\over \sqrt{\sum_j G_{i,j,t} \sum_j G_{i,j,t+1}}}\]

When calc=’node’, then the topological overlap is the mean of math:TopoOverlap_{i,t}:

\[AvgTopoOverlap_{i} = {1 \over T-1} \sum_t TopoOverlap_{i,t}\]

where T is the number of time-points.
This is called the average topological overlap.

When calc=’overtime’, the temporal-correlation coefficient is calculated

\[TempCorrCoeff = {1 \over N} \sum_i AvgTopoOverlap_i\]

where N is the number of nodes.

For all the three measures above, the value is between 0 and 1 where 0
entails “all edges changes” and 1 entails “no edges change”.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Then make an temporal network with 3 nodes and 4 time-points.

>>> G = np.zeros([3, 3, 3])
>>> i_ind = np.array([0, 0, 0, 0,])
>>> j_ind = np.array([1, 1, 1, 2,])
>>> t_ind = np.array([0, 1, 2, 2,])
>>> G[i_ind, j_ind, t_ind] = 1
>>> G = G + G.transpose([1,0,2]) # Make symmetric

Now the topological overlap can be calculated:

>>> topo_overlap = teneto.networkmeasures.topological_overlap(G)

This returns topo_overlap which is a (node,time) array.
Looking above at how we defined G,
when t = 0, there is only the edge (0,1).
When t = 1, this edge still remains.
This means topo_overlap should equal 1 for node 0 at t=0 and 0 for node 2:

>>> topo_overlap[0,0]
1.0
>>> topo_overlap[2,0]
0.0

At t=2, there is now also an edge between (0,2),
this means node 0’s topological overlap at t=1 decreases as
its edges have decreased in their persistency at the next time point
(i.e. some change has occured). It equals ca. 0.71

>>> topo_overlap[0,1]
0.7071067811865475

If we want the average topological overlap, we simply add the calc argument to be ‘node’.

>>> avg_topo_overlap = teneto.networkmeasures.topological_overlap(G, calc='node')

Now this is an array with a length of 3 (one per node).

>>> avg_topo_overlap
array([0.85355339, 1. , 0.])

Here we see that node 1 had all its connections persist, node 2 had no connections persisting, and node 0 was in between.

To calculate the temporal correlation coefficient,

>>> temp_corr_coeff = teneto.networkmeasures.topological_overlap(G, calc='overtime')

This produces one value reflecting all of G

>>> temp_corr_coeff
0.617851130197758

References

	topo-1

	Tang et al (2010) Small-world behavior in time-varying graphs.
Phys. Rev. E 81, 055101(R) [arxiv link [https://arxiv.org/pdf/0909.1712.pdf]]

	topo-2

	Nicosia et al (2013) “Graph Metrics for Temporal Networks”
In: Holme P., Saramäki J. (eds) Temporal Networks.
Understanding Complex Systems. Springer.
[arxiv link [https://arxiv.org/pdf/1306.0493.pdf]]

local_variation

	
local_variation(data)[source]

	Calculates the local variaiont of inter-contact times. [LV-1], [LV-2]

	Parameters

	data (array, dict) – This is either (1) temporal network input (graphlet or contact) with nettype: ‘bu’, ‘bd’.
(2) dictionary of ICTs (output of intercontacttimes).

	Returns

	LV – Local variation per edge.

	Return type

	array

Notes

The local variation is like the bursty coefficient and quantifies if a series of inter-contact times are periodic, random or Poisson distributed or bursty.

It is defined as:

\[LV = {3 \over {n-1}}\sum_{i=1}^{n-1}{{{\iota_i - \iota_{i+1}} \over {\iota_i + \iota_{i+1}}}^2}\]

Where \(\iota\) are inter-contact times and i is the index of the inter-contact time (not a node index).
n is the number of events, making n-1 the number of inter-contact times.

The possible range is: \(0 \geq LV \gt 3\).

When periodic, LV=0, Poisson, LV=1 Larger LVs indicate bursty process.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Now create 2 temporal network of 2 nodes and 60 time points. The first has periodict edges, repeating every other time-point:

>>> G_periodic = np.zeros([2, 2, 60])
>>> ts_periodic = np.arange(0, 60, 2)
>>> G_periodic[:,:,ts_periodic] = 1

The second has a more bursty pattern of edges:

>>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
>>> G_bursty = np.zeros([2, 2, 60])
>>> G_bursty[:,:,ts_bursty] = 1

Now we call local variation for each edge.

>>> LV_periodic = teneto.networkmeasures.local_variation(G_periodic)
>>> LV_periodic
array([[nan, 0.],
 [0., nan]])

Above we can see that between node 0 and 1, LV=0 (the diagonal is nan).
This is indicative of a periodic contacts (which is what we defined).
Doing the same for the second example:

>>> LV_bursty = teneto.networkmeasures.local_variation(G_bursty)
>>> LV_bursty
array([[nan, 1.28748748],
 [1.28748748, nan]])

When the value is greater than 1, it indicates a bursty process.

nans are returned if there are no intercontacttimes

References

	LV-1

	Shinomoto et al (2003)
Differences in spiking patterns among cortical neurons.
Neural Computation 15.12
[Link [https://www.mitpressjournals.org/doi/abs/10.1162/089976603322518759]]

	LV-2

	Followed eq., 4.34 in Masuda N & Lambiotte (2016)
A guide to temporal networks. World Scientific.
Series on Complex Networks. Vol 4
[Link [https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001]]

temporal_betweenness_centrality

	
temporal_betweenness_centrality(tnet=None, paths=None, calc='pertime')[source]

	Returns temporal betweenness centrality per node.

	Parameters

	
	data (array or dict) – Temporal network input (graphlet or contact). nettype: ‘bu’, ‘bd’.

	calc (str) – either ‘overtime’ or ‘pertime’

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

Note

Input should be either tnet or paths.

	Returns

	normalized temporal betweenness centrality.

If calc = ‘pertime’, returns (node,time)

If calc = ‘overtime’, returns (node)

	Return type

	close: array

Notes

Temporal betweenness centrality uses the shortest temporal
paths and calculates betweennesss from it.

Teneto returns a normalized betweenness centrality value,
defined as [Bet-1]:

\[B_{it} = {1 \over (N-1)(N-2)} \sum_{j = 1; j \neq i}
\sum_{k = 1; k \neq i,j} {\sigma^i_{jkt} \over \sigma_{jk}}\]

If there is a shortest temporal path from j to k, starting at t that
goes through node i, then \(\sigma^i_{jkt}\) is 1, otherwise 0.
\(\sigma_{jk}\) is the total number of paths that exist from j to k.
The remaining part of the equation normalizes by the number of nodes.

If a temporal network is used as input (i.e. not the paths), then teneto
uses shortest_temporal_path() to calculates the shortest paths.
See shortest_temporal_path() for more details.

If calc=overtime then the average B over time is returned.

References

	Bet-1

	Tang, J., Musolesi, M., Mascolo, C., Latora, V., & Nicosia, V. (2010).
Analysing Information Flows and Key Mediators through Temporal Centrality
Metrics Categories and Subject Descriptors.
Proceedings of the 3rd Workshop on Social Network Systems.
[`Link https://doi.org/10.1145/1852658.1852661`_]

teneto.plot

teneto.plot Package

Imports when importing plot

Functions

	slice_plot(netin, ax[, nodelabels, …])

	Fuction draws “slice graph”.

	circle_plot(netIn, ax[, nodelabels, …])

	Function draws “circle plot” and exports axis handles

	graphlet_stack_plot(netin, ax[, q, cmap, …])

	Returns matplotlib axis handle for graphlet_stack_plot.

slice_plot

	
slice_plot(netin, ax, nodelabels=None, timelabels=None, communities=None, plotedgeweights=False, edgeweightscalar=1, timeunit='', linestyle='k-', cmap=None, nodesize=100, nodekwargs=None, edgekwargs=None)[source]

	Fuction draws “slice graph”.

A slice plot plots all the nodes per time point as a column
with Bezier curvers connecting connected nodes.

	Parameters

	
	netin (array, dict) – temporal network input (graphlet or contact)

	ax (matplotlib figure handles.) –

	nodelabels (list) – nodes labels. List of strings.

	timelabels (list) – labels of dimension Graph is expressed across. List of strings.

	communities (array) – array of size: (time) or (node,time). Nodes will be coloured accordingly.

	plotedgeweights (bool) – if True, edges will vary in size (default False)

	edgeweightscalar (int) – scalar to multiply all edges if tweaking is needed.

	timeunit (string) – unit time axis is in.

	linestyle (string) – line style of Bezier curves.

	nodesize (int) – size of nodes

	nodekwargs (dict) – any additional kwargs for matplotlib.plt.scatter for the nodes

	edgekwargs (dict) – any additional kwargs for matplotlib.plt.plots for the edges

	Returns

	ax

	Return type

	axis handle of slice graph

Examples

Create a network with some metadata

>>> import numpy as np
>>> import teneto
>>> import matplotlib.pyplot as plt
>>> np.random.seed(2017) # For reproduceability
>>> N = 5 # Number of nodes
>>> T = 10 # Number of timepoints
>>> # Probability of edge activation
>>> birth_rate = 0.2
>>> death_rate = .9
>>> # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007
>>> cfg={}
>>> cfg['Fs'] = 1
>>> cfg['timeunit'] = 'Years'
>>> cfg['t0'] = 2007 #First year in network
>>> cfg['nodelabels'] = ['Ashley','Blake','Casey','Dylan','Elliot'] # Node names
>>> #Generate network
>>> C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg)

Now this network can be plotted

>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = teneto.plot.slice_plot(C, ax, cmap='Pastel2')
>>> plt.tight_layout()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/teneto-plot-slice_plot-1.png]

circle_plot

	
circle_plot(netIn, ax, nodelabels=None, linestyle='k-', nodesize=1000, cmap='Set2')[source]

	Function draws “circle plot” and exports axis handles

	Parameters

	
	netIn (temporal network input (graphlet or contact)) –

	ax (matplotlib ax handles.) –

	nodelabels (list) – nodes labels. List of strings

	linestyle (str) – line style

	nodesize (int) – size of nodes

	cmap (str) – matplotlib colormap

	Returns

	ax

	Return type

	axis handle

Example

>>> import teneto
>>> import numpy
>>> import matplotlib.pyplot as plt
>>> G = np.zeros([6, 6])
>>> i = [0, 0, 0, 1, 2, 3, 4]
>>> j = [3, 4, 5, 5, 4, 5, 5]
>>> G[i, j] = 1
>>> fig, ax = plt.subplots(1)
>>> ax = teneto.plot.circle_plot(G, ax)
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/teneto-plot-circle_plot-1.png]

graphlet_stack_plot

	
graphlet_stack_plot(netin, ax, q=10, cmap='Reds', gridcolor='k', borderwidth=2, bordercolor=None, Fs=1, timeunit='', t0=1, sharpen='yes', vminmax='minmax')[source]

	Returns matplotlib axis handle for graphlet_stack_plot. This is a row of transformed connectivity matrices to look like a 3D stack.

	Parameters

	
	netin (array, dict) – network input (graphlet or contact)

	ax (matplotlib ax handles.) –

	q (int) – Quality. Increaseing this will lead to smoother axis but take up more memory.

	cmap (str) – Colormap (matplotlib) of graphlets

	Fs (int) – Sampling rate. Same as contact-representation (if netin is contact,
and input is unset, contact dictionary is used)

	timeunit (str) – Unit of time for xlabel. Same as contact-representation (if netin is contact,
and input is unset, contact dictionary is used)

	t0 (int) – What should the first time point be called. Should be integer. Default 1.

	gridcolor (str) – The color of the grid section of the graphlets. Set to ‘none’ if not wanted.

	borderwidth (int) – Scales the size of border.

	bordorcolor – color of the border (at the moment it must be in RGB values between 0 and 1
-> this will be changed sometime in the future). Default: black.

	vminmax (str) – ‘maxabs’, ‘minmax’ (default), or list/array with length of 2.
Specifies the min and max colormap value of graphlets.
Maxabs entails [-max(abs(G)),max(abs(G))], minmax entails [min(G), max(G)].

	Returns

	ax

	Return type

	matplotlib ax handle

Note

This function can require a lot of RAM with larger networks.

Note

At the momenet bordercolor cannot be set to zero. To remove border, set bordorwidth=1 and bordercolor=[1,1,1] for temporay workaround.

Examples

Create a network with some metadata

>>> import numpy as np
>>> import teneto
>>> import matplotlib.pyplot as plt
>>> np.random.seed(2017) # For reproduceability
>>> N = 5 # Number of nodes
>>> T = 10 # Number of timepoints
>>> # Probability of edge activation
>>> birth_rate = 0.2
>>> death_rate = .9
>>> # Add node names into the network and say time units are years, go 1 year per
graphlet and startyear is 2007
>>> cfg={}
>>> cfg['Fs'] = 1
>>> cfg['timeunit'] = 'Years'
>>> cfg['t0'] = 2007 #First year in network
>>> #Generate network
>>> C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg)

Now this network can be plotted

>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap='Greys')
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/teneto-plot-graphlet_stack_plot-1.png]

teneto.timeseries

teneto.timeseries Package

Import functions from time series module

Functions

	derive_temporalnetwork(data, params)

	Derives connectivity from the data.

	postpro_pipeline(data, pipeline[, report])

	Function to call multiple postprocessing steps.

	postpro_fisher(data[, report])

	Performs fisher transform on everything in data.

	postpro_standardize(data[, report])

	Standardizes everything in data (along axis -1).

	postpro_boxcox(data[, report])

	Performs box cox transform on everything in data.

	remove_confounds(timeseries, confounds[, …])

	Removes specified confounds using nilearn.signal.clean

	gen_report(report[, sdir, report_name])

	Generates report of derivation and postprocess steps in teneto.timeseries

derive_temporalnetwork

	
derive_temporalnetwork(data, params)[source]

	Derives connectivity from the data.

	A lot of data is inherently built with edges

	(e.g. communication between two individuals).

	However other networks are derived from the covariance of time series

	(e.g. brain networks between two regions).

	Covariance based metrics deriving time-resolved networks can be done in multiple ways.

	There are other methods apart from covariance based.

	Derive a weight vector for each time point and then the corrrelation coefficient

	for each time point.

	dataarray

	Time series data to perform connectivity derivation on.
(Default dimensions are: (time as rows, nodes as columns).
Change params{‘dimord’} if you want it the other way (see below).

	paramsdict

	Parameters for each method (see below).

	methodstr

	
method: “distance”,”slidingwindow”, “taperedslidingwindow”,

“jackknife”, “multiplytemporalderivative”.
Alternatively, method can be a weight matrix of size time x time.

Different methods have method specific paramaters (see below)

postpro : “no” (default).
Other alternatives are: “fisher”, “boxcox”, “standardize”

	and any combination seperated by a + (e,g, “fisher+boxcox”).

	See postpro_pipeline for more information.

	dimordstr

	Dimension order: ‘node,time’ (default) or ‘time,node’.
People like to represent their data differently and this is an easy way
to be sure that you are inputing the data in the correct way.

	analysis_idstr or int

	add to identify specfic analysis.
Generated report will be placed in ‘./report/’ + analysis_id + ‘/derivation_report.html

	reportbool

	False by default.
If true, A report is saved in ./report/[analysis_id]/derivation_report.html if “yes”

	report_pathstr

	String where the report is saved.
Default is ./report/[analysis_id]/derivation_report.html

Distance metric calculates 1/Distance metric weights, and scales between 0 and 1.
W[t,t] is excluded from the scaling and then set to 1.

	params[‘distance’]: str

	Distance metric (e.g. ‘euclidean’). See teneto.utils.get_distance_function for more info

	params[‘windowsize’]int

	Size of window.

	params[‘windowsize’]int

	Size of window.

	params[‘distribution’]str

	Scipy distribution (e.g. ‘norm’,’expon’). Any distribution here: https://docs.scipy.org/doc/scipy/reference/stats.html

	params[‘distribution_params’]dict

	Dictionary of distribution parameter, excluding the data “x” to generate pdf.

	The data x should be considered to be centered at 0 and have a length of window size.

	(i.e. a window size of 5 entails x is [-2, -1, 0, 1, 2] a window size of 6 entails [-2.5, -1.5, 0.5, 0.5, 1.5, 2.5])

Given x params[‘distribution_params’] contains the remaining parameters.

e.g. normal distribution requires pdf(x, loc, scale) where loc=mean and scale=std.

	Say we have a gaussian distribution, a window size of 21 and params[‘distribution_params’] = {‘loc’: 0, ‘scale’: 5}.

	This will lead to a gaussian with its peak at in the middle of each window with a standard deviation of 5.

	params[‘windowsize’]int

	Size of window.

No parameters are necessary.

Optional parameters:

	params[‘weight-var’]array, (optional)

	NxN array to weight the JC estimates (standerdized-JC*W). If weightby is selected, do not standerdize in postpro.

	params[‘weight-mean’]array, (optional)

	NxN array to weight the JC estimates (standerdized-JC+W). If weightby is selected, do not standerdize in postpro.

No parameters are necessary.

	Returns

	G – Connectivity estimates (nodes x nodes x time)

	Return type

	array

About the general weighted pearson approach used for most methods, see:
Thompson & Fransson (2019) A common framework for the problem of deriving estimates of dynamic functional brain connectivity.
Neuroimage. (https://doi.org/10.1016/j.neuroimage.2017.12.057)

See also

postpro_pipeline, gen_report

postpro_pipeline

	
postpro_pipeline(data, pipeline, report=None)[source]

	Function to call multiple postprocessing steps.

	Parameters

	
	data (array) – pearson correlation values in temporal matrix form (node,node,time)

	pipeline (list or str) – (if string, each steps seperated by + sign).

	options

	’fisher’,’boxcox’,’standardize’

Each of the above 3 can be specified. If fisher is used, it must be before boxcox.
If standardize is used it must be after boxcox and fisher.

	report (bool) – If true, appended to report.

	Returns

	
	postpro_data (array) – postprocessed data

	postprocessing_info (dict) – Information about postprocessing

postpro_fisher

	
postpro_fisher(data, report=None)[source]

	Performs fisher transform on everything in data.

If report variable is passed, this is added to the report.

postpro_standardize

	
postpro_standardize(data, report=None)[source]

	Standardizes everything in data (along axis -1).

If report variable is passed, this is added to the report.

postpro_boxcox

	
postpro_boxcox(data, report=None)[source]

	Performs box cox transform on everything in data.

If report variable is passed, this is added to the report.

remove_confounds

	
remove_confounds(timeseries, confounds, confound_selection=None, clean_params=None)[source]

	Removes specified confounds using nilearn.signal.clean

	Parameters

	
	timeseries (array or dataframe) – input timeseries with dimensions: (node,time)

	confounds (array or dataframe) – List of confounds. Expected format is (confound, time).
If using TenetoBIDS, this does not need to be specified.

	confound_selection (list) – List of confounds. If None, all confoudns are removed

	clean_params (dict) – Dictionary of kawgs to pass to nilearn.signal.clean

	Returns

	

	Return type

	Says all TenetBIDS.get_selected_files with confounds removed with _rmconfounds at the end.

Note

There may be some issues regarding loading non-cleaned data through the TenetoBIDS functions instead of the cleaned data. This depeneds on when you clean the data.

gen_report

	
gen_report(report, sdir='./', report_name='report.html')[source]

	Generates report of derivation and postprocess steps in teneto.timeseries

teneto.trajectory

compression

Calculate compression of trajectory.

	
create_traj_ranges(start, stop, N)[source]

	Fills in the trajectory range.

Adapted from https://stackoverflow.com/a/40624614

	
rdp(datin, delta=1, report=10, quiet=True)[source]

	

Module contents

Trajectory module

teneto.utils

teneto.utils Package

Many helper functions for Teneto

Functions

	graphlet2contact(tnet[, params])

	Converts array representation to contact representation.

	contact2graphlet(C)

	Converts contact representation to array representation.

	binarize_percent(netin, level[, sign, axis])

	Binarizes a network proprtionally.

	binarize_rdp(netin, level[, sign, axis])

	Binarizes a network based on RDP compression.

	binarize_magnitude(netin, level[, sign])

	Make binary network based on magnitude thresholding.

	binarize(netin, threshold_type, threshold_level)

	Binarizes a network, returning the network.

	set_diagonal(tnet[, val])

	Generally diagonal is set to 0.

	gen_nettype(tnet[, weightonly])

	Attempts to identify what nettype input graphlet tnet is.

	check_input(netin[, rasie_if_undirected, conmat])

	This function checks that netin input is either graphlet (tnet) or contact (C).

	get_distance_function(requested_metric)

	This function returns a specified distance function.

	process_input(netin, allowedformats[, …])

	Takes input network and checks what the input is.

	clean_community_indexes(communityID)

	Takes input of community assignments.

	multiple_contacts_get_values(C)

	Given an contact representation with repeated contacts, this function removes duplicates and creates a value

	df_to_array(df, netshape, nettype[, start_at])

	Returns a numpy array (snapshot representation) from thedataframe contact list

	check_distance_funciton_input(…)

	Function checks distance_func_name, if it is specified as ‘default’.

	get_dimord(measure[, calc, community])

	Get the dimension order of a network measure.

	get_network_when(tnet[, i, j, t, ij, logic, …])

	Returns subset of dataframe that matches index

	create_supraadjacency_matrix(tnet[, …])

	Returns a supraadjacency matrix from a temporal network structure

	df_drop_ij_duplicates(df)

	

	tnet_to_nx(df[, t])

	Creates undirected networkx object

	is_jsonable(x)

	Check if a dict is jsonable.

graphlet2contact

	
graphlet2contact(tnet, params=None)[source]

	Converts array representation to contact representation.

Contact representation are more efficient for memory storing.
Also includes metadata which can made it easier for plotting.
A contact representation contains all non-zero edges.

	Parameters

	
	tnet (array_like) – Temporal network.

	params (dict, optional) – Dictionary of parameters for contact representation.

	Fsint, default=1

	sampling rate.

	timeunitstr, default=’’

	Sampling rate in for units (e.g. seconds, minutes, years).

	nettypestr, default=’auto’

	Define what type of network. Can be:
‘auto’: detects automatically;
‘wd’: weighted, directed;
‘bd’: binary, directed;
‘wu’: weighted, undirected;
‘bu’: binary, undirected.

	diagonalint, default = 0.

	What should the diagonal be.

	timetypestr, default=’discrete’

	Time units can be The params file becomes the foundation of ‘C’.
Any other information in params, will added to C.

	nodelabelslist

	Set nod labels.

	t0: int

	Time label at first index.

	Returns

	C – Contact representation of temporal network.
Includes ‘contacts’, ‘values’ (if nettype[0]=’w’),’nettype’,’netshape’, ‘Fs’, ‘dimord’ and ‘timeunit’, ‘timetype’.

	Return type

	dict

contact2graphlet

	
contact2graphlet(C)[source]

	Converts contact representation to array representation.

Graphlet representation discards all meta information in contacts.

	Parameters

	C (dict) – A contact representation. Must include keys: ‘dimord’, ‘netshape’, ‘nettype’, ‘contacts’ and, if weighted, ‘values’.

	Returns

	tnet – Graphlet representation of temporal network.

	Return type

	array

Note

Returning elements of tnet will be float, even if binary graph.

binarize_percent

	
binarize_percent(netin, level, sign='pos', axis='time')[source]

	Binarizes a network proprtionally. When axis=’time’ (only one available at the moment) then the top values for each edge time series are considered.

	Parameters

	
	netin (array or dict) – network (graphlet or contact representation),

	level (float) – Percent to keep (expressed as decimal, e.g. 0.1 = top 10%)

	sign (str, default='pos') – States the sign of the thresholding. Can be ‘pos’, ‘neg’ or ‘both’. If “neg”, only negative values are thresholded and vice versa.

	axis (str, default='time') – Specify which dimension thresholding is applied against.
Can be ‘time’ (takes top % for each edge time-series) or ‘graphlet’
(takes top % for each graphlet)

	Returns

	netout – Binarized network

	Return type

	array or dict (depending on input)

binarize_rdp

	
binarize_rdp(netin, level, sign='pos', axis='time')[source]

	Binarizes a network based on RDP compression.

	Parameters

	
	netin (array or dict) – Network (graphlet or contact representation),

	level (float) – Delta parameter which is the tolorated error in RDP compression.

	sign (str, default='pos') – States the sign of the thresholding. Can be ‘pos’, ‘neg’ or ‘both’. If “neg”, only negative values are thresholded and vice versa.

	Returns

	netout – Binarized network

	Return type

	array or dict (dependning on input)

binarize_magnitude

	
binarize_magnitude(netin, level, sign='pos')[source]

	Make binary network based on magnitude thresholding.

	Parameters

	
	netin (array or dict) – Network (graphlet or contact representation),

	level (float) – Magnitude level threshold at.

	sign (str, default='pos') – States the sign of the thresholding. Can be ‘pos’, ‘neg’ or ‘both’. If “neg”, only negative values are thresholded and vice versa.

	axis (str, default='time') – Specify which dimension thresholding is applied against. Only ‘time’ option exists at present.

	Returns

	netout – Binarized network

	Return type

	array or dict (depending on input)

binarize

	
binarize(netin, threshold_type, threshold_level, outputformat='auto', sign='pos', axis='time')[source]

	Binarizes a network, returning the network. General wrapper function for different binarization functions.

	Parameters

	
	netin (array or dict) – Network (graphlet or contact representation),

	threshold_type (str) – What type of thresholds to make binarization. Options: ‘rdp’, ‘percent’, ‘magnitude’.

	threshold_level (str) – Paramter dependent on threshold type.
If ‘rdp’, it is the delta (i.e. error allowed in compression).
If ‘percent’, it is the percentage to keep (e.g. 0.1, means keep 10% of signal).
If ‘magnitude’, it is the amplitude of signal to keep.

	outputformat (str) – specify what format you want the output in: G, C, TN, or DF. If ‘auto’, input form is returned.

	sign (str, default='pos') – States the sign of the thresholding. Can be ‘pos’, ‘neg’ or ‘both’. If “neg”, only negative values are thresholded and vice versa.

	axis (str) – Threshold over specfied axis. Valid for percent and rdp. Can be time or graphlet.

	Returns

	netout – Binarized network

	Return type

	array or dict (depending on input)

set_diagonal

	
set_diagonal(tnet, val=0)[source]

	Generally diagonal is set to 0. This function helps set the diagonal across time.

	Parameters

	
	tnet (array) – temporal network (graphlet)

	val (value to set diagonal to (default 0)) –

	Returns

	tnet – Graphlet representation with new diagonal

	Return type

	array

gen_nettype

	
gen_nettype(tnet, weightonly=False)[source]

	Attempts to identify what nettype input graphlet tnet is. Diagonal is ignored.

	tnetarray

	temporal network (graphlet)

	Returns

	nettype – ‘wu’, ‘bu’, ‘wd’, or ‘bd’

	Return type

	str

check_input

	
check_input(netin, rasie_if_undirected=1, conmat=0)[source]

	This function checks that netin input is either graphlet (tnet) or contact (C).

	Parameters

	
	netin (array or dict) – temporal network, (graphlet or contact).

	rasie_if_undirected (int, default=1.) – Options 1 or 0. Error is raised if not found to be tnet or C

	conmat (int, default=0.) – Options 1 or 0. If 1, input is allowed to be a 2 dimensional connectivity matrix.
Allows output to be ‘M’

	Returns

	inputtype – String indicating input type. ‘G’,’C’, ‘M’ or ‘U’ (unknown).
M is special case only allowed when conmat=1 for a 2D connectivity matrix.

	Return type

	str

get_distance_function

	
get_distance_function(requested_metric)[source]

	This function returns a specified distance function.

	requested_metric: str

	Distance function. Can be any function in: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html.

	Returns

	requested_metric

	Return type

	distance function

process_input

	
process_input(netin, allowedformats, outputformat='G', forcesparse=False)[source]

	Takes input network and checks what the input is.

	Parameters

	
	netin (array, dict, or teneto.TemporalNetwork) – Network (graphlet, contact or object)

	allowedformats (list or str) – Which format of network objects that are allowed. Options: ‘C’, ‘TN’, ‘G’.

	outputformat (str, default=G) – Target output format. Options: ‘C’ or ‘G’.

	Returns

	
	C (dict)

	OR

	tnet (array) – Graphlet representation.

	netinfo (dict) – Metainformation about network.

	OR

	tnet (object) – object of teneto.TemporalNetwork class

clean_community_indexes

	
clean_community_indexes(communityID)[source]

	Takes input of community assignments. Returns reindexed community assignment by using smallest numbers possible.

	Parameters

	communityID (array-like) – list or array of integers. Output from community detection algorithems.

	Returns

	new_communityID – cleaned list going from 0 to len(np.unique(communityID))-1

	Return type

	array

Note

Behaviour of funciton entails that the lowest community integer in communityID will recieve the lowest integer in new_communityID.

multiple_contacts_get_values

	
multiple_contacts_get_values(C)[source]

	Given an contact representation with repeated contacts, this function removes duplicates and creates a value

	Parameters

	C (dict) – contact representation with multiple repeated contacts.

	Returns

	Contact representation with duplicate contacts removed and the number of duplicates is now in the ‘values’ field.

	Return type

	C_out: dict

df_to_array

	
df_to_array(df, netshape, nettype, start_at='min')[source]

	Returns a numpy array (snapshot representation) from thedataframe contact list

	Parameters

	
	df – pandas df
pandas df with columns, i,j,t.

	netshape – tuple
network shape, format: (node, time)

	nettype – str
‘wu’, ‘wd’, ‘bu’, ‘bd’

	start_at – str
‘min’ or ‘zero’ or int.
If min, the 0th time-point in the array is min t value.
If zero, the 0th time-point in the array is 0.
If int, the 0th time-point in array starts at int in df.

	tnetarray

	(node,node,time) array for the network

check_distance_funciton_input

	
check_distance_funciton_input(distance_func_name, netinfo)[source]

	Function checks distance_func_name, if it is specified as ‘default’.
Then given the type of the network selects a default distance function.

	Parameters

	
	distance_func_name (str) – distance function name.

	netinfo (dict) – the output of utils.process_input

	Returns

	distance_func_name – distance function name.

	Return type

	str

get_dimord

	
get_dimord(measure, calc=None, community=None)[source]

	Get the dimension order of a network measure.

	Parameters

	
	measure (str) – Name of funciton in teneto.networkmeasures.

	calc (str, default=None) – Calc parameter for the function

	community (bool, default=None) – If not null, then community property is assumed to be believed.

	Returns

	dimord – Dimension order. So “node,node,time” would define the dimensions of the network measure.

	Return type

	str

get_network_when

	
get_network_when(tnet, i=None, j=None, t=None, ij=None, logic='and', copy=False, asarray=False, netshape=None, nettype=None)[source]

	Returns subset of dataframe that matches index

	Parameters

	
	tnet (df, array or teneto.TemporalNetwork) – teneto.TemporalNetwork object or pandas dataframe edgelist

	i (list or int) – get nodes in column i (source nodes in directed networks)

	j (list or int) – get nodes in column j (target nodes in directed networks)

	t (list or int) – get edges at this time-points.

	ij (list or int) – get nodes for column i or j (logic and can still persist for t). Cannot be specified along with i or j

	logic (str) – options: ‘and’ or ‘or’. If ‘and’, functions returns rows that corrspond that match all i,j,t arguments. If ‘or’, only has to match one of them

	copy (bool) – default False. If True, returns a copy of the dataframe. Note relevant if hd5 data.

	asarray (bool) – default False. If True, returns the list of edges as a numpy array.

	Returns

	df – Unless asarray are set to true.

	Return type

	pandas dataframe

create_supraadjacency_matrix

	
create_supraadjacency_matrix(tnet, intersliceweight=1)[source]

	Returns a supraadjacency matrix from a temporal network structure

	Parameters

	
	tnet (teneto.TemporalNetwork) – Temporal network (any network type)

	intersliceweight (int) – Weight that links the same node from adjacent time-points

	Returns

	supranet – Supraadjacency matrix

	Return type

	dataframe

df_drop_ij_duplicates

	
df_drop_ij_duplicates(df)[source]

	

tnet_to_nx

	
tnet_to_nx(df, t=None)[source]

	Creates undirected networkx object

is_jsonable

	
is_jsonable(x)[source]

	Check if a dict is jsonable.

Credit: https://stackoverflow.com/a/53112659

Contributers

	William Hedley Thompson

	Peter Fransson

	Vatika Harlalka

Contribute to teneto?

Found a bug or want to add a feature? Feel free to contribute! Open up an issue on github with a suggestion/fix and then leave a pull request to submit your code.

At the github page you can find suggested enhancements that you can contribute to: https://github.com/wiheto/teneto/issues

Suggestions of other things that need to be added:

	Control theory.

	Weighted shortest paths.

	More network measures.

	More derive_temporalnetwork alternatives.

	Null models.

	Better documentation/tutorials

	More plot alternatives

	Complete HDF5 compatibility

	Freesurfer output in TenetoBIDS

	Implement continous time for all networkmeasures (where possible)

FAQ

What is the dimension order for dense arrays in Teneto?

Inputs/outputs in Teneto can be in both Numpy arrays (time series or temporal works) or Pandas Dataframes (time series).
The default dimension order runs from node to time. This means that if you have a temporal network array in Teneto, than the array should have the dimension order (node,node,time).
If using time series than the dimension order (node,time). This entails that the nodes are the rows in a pandas array and the time-points are the columns.
Different software can organize their dimension orders differently (e.g. Nilearn uses a time,node dimension order).

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 teneto	

 	
 	
 teneto.classes	

 	
 	
 teneto.communitydetection.louvain	

 	
 	
 teneto.communitymeasures	

 	
 	
 teneto.generatenetwork	

 	
 	
 teneto.networkmeasures	

 	
 	
 teneto.networkmeasures.bursty_coeff	

 	
 	
 teneto.networkmeasures.fluctuability	

 	
 	
 teneto.networkmeasures.intercontacttimes	

 	
 	
 teneto.networkmeasures.local_variation	

 	
 	
 teneto.networkmeasures.reachability_latency	

 	
 	
 teneto.networkmeasures.shortest_temporal_path	

 	
 	
 teneto.networkmeasures.sid	

 	
 	
 teneto.networkmeasures.temporal_closeness_centrality	

 	
 	
 teneto.networkmeasures.temporal_degree_centrality	

 	
 	
 teneto.networkmeasures.temporal_efficiency	

 	
 	
 teneto.networkmeasures.topological_overlap	

 	
 	
 teneto.networkmeasures.volatility	

 	
 	
 teneto.plot	

 	
 	
 teneto.timeseries	

 	
 	
 teneto.trajectory	

 	
 	
 teneto.trajectory.compression	

 	
 	
 teneto.utils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_edge() (TemporalNetwork method)

 	
 	add_node() (TenetoWorkflow method)

 	allegiance() (in module teneto.communitymeasures)

B

 	
 	binarize() (in module teneto.utils)

 	(TemporalNetwork method)

 	binarize_magnitude() (in module teneto.utils)

 	
 	binarize_percent() (in module teneto.utils)

 	binarize_rdp() (in module teneto.utils)

 	bursty_coeff() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.bursty_coeff), [1]

C

 	
 	calc_networkmeasure() (TemporalNetwork method)

 	calc_runorder() (TenetoWorkflow method)

 	check_distance_funciton_input() (in module teneto.utils)

 	check_input() (in module teneto.utils)

 	circle_plot() (in module teneto.plot)

 	
 	clean_community_indexes() (in module teneto.utils)

 	contact2graphlet() (in module teneto.utils)

 	create_output_pipeline() (TenetoBIDS method)

 	create_supraadjacency_matrix() (in module teneto.utils)

 	create_traj_ranges() (in module teneto.trajectory.compression)

D

 	
 	delete_output_from_level() (TenetoWorkflow method)

 	derive_temporalnetwork() (in module teneto.timeseries)

 	df_drop_ij_duplicates() (in module teneto.utils)

 	
 	df_to_array() (in module teneto.utils)

 	(TemporalNetwork method)

 	drop_edge() (TemporalNetwork method)

F

 	
 	flexibility() (in module teneto.communitymeasures)

 	
 	fluctuability() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.fluctuability), [1]

G

 	
 	gen_nettype() (in module teneto.utils)

 	gen_report() (in module teneto.timeseries)

 	generatenetwork() (TemporalNetwork method)

 	get_aux_file() (TenetoBIDS method)

 	get_dimord() (in module teneto.utils)

 	get_distance_function() (in module teneto.utils)

 	
 	get_network_when() (in module teneto.utils)

 	(TemporalNetwork method)

 	get_run_options() (TenetoBIDS method)

 	get_selected_files() (TenetoBIDS method)

 	graphlet2contact() (in module teneto.utils)

 	graphlet_stack_plot() (in module teneto.plot)

H

 	
 	hdf5_setup() (TemporalNetwork method)

I

 	
 	integration() (in module teneto.communitymeasures)

 	intercontacttimes() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.intercontacttimes), [1]

 	
 	is_jsonable() (in module teneto.utils)

L

 	
 	load_data() (TenetoBIDS method)

 	load_events() (TenetoBIDS method)

 	
 	load_file() (TenetoBIDS method)

 	local_variation() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.local_variation), [1]

M

 	
 	make_consensus_matrix() (in module teneto.communitydetection.louvain)

 	make_temporal_consensus() (in module teneto.communitydetection.louvain)

 	
 	make_workflow_figure() (TenetoWorkflow method)

 	multiple_contacts_get_values() (in module teneto.utils)

N

 	
 	network_from_array() (TemporalNetwork method)

 	network_from_df() (TemporalNetwork method)

 	
 	network_from_dict() (TemporalNetwork method)

 	network_from_edgelist() (TemporalNetwork method)

P

 	
 	persistence() (in module teneto.communitymeasures)

 	plot() (TemporalNetwork method)

 	postpro_boxcox() (in module teneto.timeseries)

 	postpro_fisher() (in module teneto.timeseries)

 	
 	postpro_pipeline() (in module teneto.timeseries)

 	postpro_standardize() (in module teneto.timeseries)

 	process_input() (in module teneto.utils)

 	promiscuity() (in module teneto.communitymeasures)

R

 	
 	rand_binomial() (in module teneto.generatenetwork)

 	rand_poisson() (in module teneto.generatenetwork)

 	rdp() (in module teneto.trajectory.compression)

 	reachability_latency() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.reachability_latency), [1]

 	
 	reachability_ratio() (in module teneto.networkmeasures.reachability_latency), [1]

 	recruitment() (in module teneto.communitymeasures)

 	remove_confounds() (in module teneto.timeseries)

 	remove_node() (TenetoWorkflow method)

 	run() (TenetoBIDS method)

 	(TenetoWorkflow method)

S

 	
 	seqpath_to_path() (in module teneto.networkmeasures.shortest_temporal_path), [1]

 	set_diagonal() (in module teneto.utils)

 	shortest_path_from_pairseq() (in module teneto.networkmeasures.shortest_temporal_path), [1]

 	shortest_temporal_path() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.shortest_temporal_path), [1]

 	
 	sid() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.sid), [1]

 	slice_plot() (in module teneto.plot)

T

 	
 	temporal_betweenness_centrality() (in module teneto.networkmeasures)

 	temporal_closeness_centrality() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.temporal_closeness_centrality), [1]

 	temporal_degree_centrality() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.temporal_degree_centrality), [1]

 	temporal_efficiency() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.temporal_efficiency), [1]

 	temporal_louvain() (in module teneto.communitydetection.louvain)

 	temporal_participation_coeff() (in module teneto.networkmeasures)

 	TemporalNetwork (class in teneto.classes)

 	teneto.classes (module)

 	teneto.communitydetection.louvain (module)

 	teneto.communitymeasures (module)

 	teneto.generatenetwork (module)

 	teneto.networkmeasures (module)

 	teneto.networkmeasures.bursty_coeff (module), [1]

 	teneto.networkmeasures.fluctuability (module), [1]

 	teneto.networkmeasures.intercontacttimes (module), [1]

 	teneto.networkmeasures.local_variation (module), [1]

 	
 	teneto.networkmeasures.reachability_latency (module), [1]

 	teneto.networkmeasures.shortest_temporal_path (module), [1]

 	teneto.networkmeasures.sid (module), [1]

 	teneto.networkmeasures.temporal_closeness_centrality (module), [1]

 	teneto.networkmeasures.temporal_degree_centrality (module), [1]

 	teneto.networkmeasures.temporal_efficiency (module), [1]

 	teneto.networkmeasures.topological_overlap (module), [1]

 	teneto.networkmeasures.volatility (module), [1]

 	teneto.plot (module)

 	teneto.timeseries (module)

 	teneto.trajectory (module)

 	teneto.trajectory.compression (module)

 	teneto.utils (module)

 	TenetoBIDS (class in teneto.classes)

 	TenetoWorkflow (class in teneto.classes)

 	tnet_to_nx() (in module teneto.utils)

 	topological_overlap() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.topological_overlap), [1]

 	troubleshoot() (TenetoBIDS method)

U

 	
 	update_bids_filter() (TenetoBIDS method)

 	
 	update_bids_layout() (TenetoBIDS method)

V

 	
 	volatility() (in module teneto.networkmeasures)

 	(in module teneto.networkmeasures.volatility), [1]

teneto.generatenetwork

teneto.generatenetwork Package

Imports when importing generatenetwork

Functions

	rand_binomial(size, prob[, netrep, nettype, …])

	Creates a random binary network following a binomial distribution.

	rand_poisson(nnodes, ncontacts[, lam, …])

	Generate a random network where intervals between contacts are distributed by a poisson distribution

 All modules for which code is available

	teneto.classes.bids

	teneto.classes.network

	teneto.classes.workflow

	teneto.communitydetection.louvain

	teneto.communitymeasures.allegiance

	teneto.communitymeasures.flexibility

	teneto.communitymeasures.integration

	teneto.communitymeasures.persistence

	teneto.communitymeasures.promiscuity

	teneto.communitymeasures.recruitment

	teneto.generatenetwork.rand_binomial

	teneto.generatenetwork.rand_poisson

	teneto.networkmeasures.bursty_coeff

	teneto.networkmeasures.fluctuability

	teneto.networkmeasures.intercontacttimes

	teneto.networkmeasures.local_variation

	teneto.networkmeasures.reachability_latency

	teneto.networkmeasures.shortest_temporal_path

	teneto.networkmeasures.sid

	teneto.networkmeasures.temporal_betweenness_centrality

	teneto.networkmeasures.temporal_closeness_centrality

	teneto.networkmeasures.temporal_degree_centrality

	teneto.networkmeasures.temporal_efficiency

	teneto.networkmeasures.temporal_participation_coeff

	teneto.networkmeasures.topological_overlap

	teneto.networkmeasures.volatility

	teneto.plot.circle_plot

	teneto.plot.graphlet_stack_plot

	teneto.plot.slice_plot

	teneto.timeseries.derive

	teneto.timeseries.postprocess

	teneto.timeseries.remove_confounds

	teneto.timeseries.report

	teneto.trajectory.compression

	teneto.utils.io

	teneto.utils.utils

 Source code for teneto.classes.bids

"""TenetoBIDS is a class to use Teneto functions with data organized with BIDS (neuroimaging data)."""
import os
import inspect
import json
import bids
import importlib
import numpy as np
import pandas as pd
import bids
from .. import __path__ as tenetopath
from .. import __version__ as tenetoversion
from ..neuroimagingtools import load_tabular_file, get_sidecar
#from .network import TemporalNetwork

[docs]class TenetoBIDS:
 """
 Class for analysing data in BIDS.

 TenetoBIDS allows for an analysis to be performed across a dataset.
 All different functions from Teneto can be applied to all files in a dataset organized in BIDS.
 Data should be first preprocessed (e.g. fMRIPrep).

 Parameters

 bids_dir : str
 string to BIDS directory
 selected_pipeline : str or dict
 the directory that is in the bids_dir/derivatives/<selected_pipeline>/.
 This fine will be used as the input to any teneto function (first argument).
 If multiple inputs are required for a function, then you can specify:
 {'netin': 'tvc',
 'communities': 'coms'}
 With this, the input for netin with be from bids_dir/derivatives/[teneto-]tvc/,
 and the input for communities will be from bids_dir/derivatives/[teneto-]coms/.
 The keys in this dictionary must match the names of the teneto funciton inputs.

 bids_filter : dict
 history : bool
 update_pipeline : bool
 If true, the output_pipeline becomes the new selected_pipeline
 exist_ok : bool
 If False, will raise an error if the output directory already exist_ok.
 If True, will not raise an error.
 This can lead to files being overwritten, if desc is not set.
 nettsv : str can be nn-t or ijt.
 nn-t means networks are node-node x time.
 ijt means daframs are ijt columns.
 """

 def __init__(self, bids_dir, selected_pipeline, bids_filter=None, bidsvalidator=False,
 update_pipeline=True, history=None, exist_ok=False, layout=None, nettsv='nn-t'):

 if layout is None:
 self.BIDSLayout = bids.BIDSLayout(bids_dir, derivatives=True, validate=bidsvalidator)
 else:
 self.BIDSLayout = layout
 self.bids_dir = bids_dir
 self.selected_pipeline = selected_pipeline
 self.nettsv = nettsv
 self.bids_filter = {} if bids_filter is None else bids_filter
 if history is not None:
 self.history = {}
 self.exist_ok = exist_ok
 self.update_pipeline = update_pipeline

 with open(tenetopath[0] + '/config/tenetobids/tenetobids_description.json') as f:
 self.tenetobids_description = json.load(f)
 self.tenetobids_description['PipelineDescription']['Version'] = tenetoversion

 with open(tenetopath[0] + '/config/tenetobids/tenetobids_structure.json') as f:
 self.tenetobids_structure = json.load(f)

 # def set_selected_pipeline(self, selected_pipeline):
 # bids.

[docs] def update_bids_layout(self):
 """
 Function that upddates to new bids l
 """
 self.BIDSLayout = bids.BIDSLayout(self.bids_dir, derivatives=True)

[docs] def create_output_pipeline(self, runc_func, output_pipeline_name, exist_ok=None):
 """Creates the directories of the saved file.

 Parameters

 output_pipeline : str
 name of output pipeline
 exist_ok : bool
 If False, will raise error if pipeline already exist_ok.
 If True, will not raise an error.
 This can lead to files being overwritten, if desc is not set.
 If None, will use the exist_ok set during init.

 Returns

 Creates the output pipeline directory in:
 bids_dir/teneto-[output_pipeline]/

 """
 if exist_ok is not None:
 self.exist_ok = exist_ok
 output_pipeline = 'teneto-'
 output_pipeline += runc_func.split('.')[-1]
 output_pipeline = output_pipeline.replace('_', '-')
 if output_pipeline_name is not None:
 output_pipeline += '_' + output_pipeline_name
 output_pipeline_path = self.bids_dir + '/derivatives/' + output_pipeline
 if os.path.exists(output_pipeline_path) and not self.exist_ok:
 raise ValueError(
 'Output_pipeline already exists. Set exist_ok to True if this is desired behaviour.')
 os.makedirs(output_pipeline_path, exist_ok=self.exist_ok)
 # Initiate with dataset_description
 datainfo = self.tenetobids_description.copy()
 datainfo['PipelineDescription']['Name'] = output_pipeline
 with open(output_pipeline_path + '/dataset_description.json', 'w') as fs:
 json.dump(datainfo, fs)
 self.update_bids_layout()
 return output_pipeline

[docs] def run(self, run_func, input_params, output_desc=None, output_pipeline_name=None, bids_filter=None, update_pipeline=True, exist_ok=None, troubleshoot=False):
 """Runs a runction on the selected files.

 Parameters

 run_func : str
 str should correspond to a teneto function.
 So to run the funciton teneto.timeseries.derive_temporalnetwork
 the input should be: 'timeseries.derive_temporalnetwork'
 input_params : dict
 keyword and value pairing of arguments for the function being run.
 The input data to each function will be located automatically.
 This input_params does not need to include the input network.
 For any other input that needs to be loaded loaded within the teneto_bidsstructure
 (communities, events, confounds),
 you can pass the value "bids" if they can be found within the current selected_pipeline.
 If they are found within a different selected_pipeline, type "bids_[selected_pipeline]".
 output_desc : str
 If none, no desc is used (removed any previous file)
 If 'keep', then desc is preserved.
 If any other str, desc is set to that string
 output_pipeline_name : str
 If set, then the data is saved in teneto_[functionname]_[output_pipeline_name].
 If run_func is teneto.timeseries.derive_temporalnetwork and output_pipeline_name
 is jackknife then then the pipeline the data is saved in is
 teneto-generatetemporalnetwork_jackknife
 update_pipeline : bool
 If set to True (default), then the selected_pipeline updates to output of function
 exist_ok : bool
 If set to True, then overwrites direcotry is possible.
 troubleshoot : bool
 If True, prints out certain information during running.
 Useful to run if reporting a bug.
 """
 if exist_ok is not None:
 self.exist_ok = exist_ok
 # Import teneto if it has not been already
 if 'teneto' not in globals():
 teneto = importlib.import_module('teneto')
 func = teneto
 for f in self.tenetobids_structure[run_func]['module'].split('.'):
 func = getattr(func, f)
 functype = self.tenetobids_structure[run_func]['functype']
 func = getattr(func, run_func)

 # Only set up an output pipeline if the functype is ondata
 if functype == 'on_data':
 output_pipeline = self.create_output_pipeline(
 run_func, output_pipeline_name, self.exist_ok)

 input_files = self.get_selected_files(run_func.split('.')[-1])

 if not input_files:
 raise ValueError('No input files')
 if troubleshoot:
 self.troubleshoot('Initial input files', {'input_files': input_files})

 # Check number of required arguments for the function
 funcparams, get_confounds = self._check_run_function_args(func, input_params, functype)

 good_files = bad_files = 0
 for f in input_files:
 f_entities = f.get_entities()
 if get_confounds == 1:
 input_params['confounds'] = self.get_aux_file(f, filetype='confounds')
 data, sidecar = self.load_file(f)
 if troubleshoot:
 self.troubleshoot('Input file name', {'f': f,
 'f_entities': f_entities,
 'sidecar': sidecar})
 if 'sidecar' in dict(funcparams):
 input_params['sidecar'] = sidecar
 if data is None:
 # Skip if data not found
 bad_files += 1
 else:
 if functype == 'on_data':
 result = func(data, **input_params)
 # if sidecar is in input_params, then sidecar is also returned
 if 'sidecar' in dict(funcparams):
 result, sidecar = result
 # if output_desc is None, then keep desc
 if output_desc is None and 'desc' in f_entities:
 f_entities.pop('desc')
 elif output_desc == 'keep':
 pass
 elif output_desc is not None:
 f_entities['desc'] = output_desc
 f_entities.update(
 self.tenetobids_structure[run_func.split('.')[-1]]['output'])
 output_pattern = '/sub-{subject}/[ses-{session}/]func/sub-{subject}[_ses-{ses}][_run-{run}]_task-{task}[_desc-{desc}]_{suffix}.{extension}'
 save_name = self.BIDSLayout.build_path(
 f_entities, path_patterns=output_pattern, validate=False)
 save_path = self.bids_dir + '/derivatives/' + output_pipeline
 if troubleshoot:
 self.troubleshoot('File name consruction', {'f_entities': f_entities,
 'save_name': save_name,
 'save_path': save_path})

 # Exist ok here has to be true, otherwise multiple runs causes an error
 # Any exist_ok is caught in create pipeline.
 os.makedirs(
 '/'.join((save_path + save_name).split('/')[:-1]), exist_ok=True)
 # Save file
 # Probably should check the output type in tenetobidsstructure
 # Table needs column header
 if isinstance(result, np.ndarray):
 if len(result.shape) == 3:
 # Should be made hdf5 at sometime
 # Idea here is to make 3D array to 2D by concatenating node dimensions.
 # At reload: to ([np.sqrt(shape[0]), np.sqrt(shape[0]), np.sqrt(shape[1])])
 shape = result.shape
 result = result.reshape([shape[0] * shape[1], shape[2]])
 result = pd.DataFrame(result)
 elif len(result.shape) == 2:
 result = pd.DataFrame(result)
 elif len(result.shape) == 1:
 result = pd.Series(result)
 else:
 raise ValueError(
 'Output was array with more than 3 dimensions (unexpected)')
 elif isinstance(result, list):
 result = pd.DataFrame(result)
 elif isinstance(result, (int, float)):
 result = pd.Series(result)
 if isinstance(result, (pd.DataFrame, pd.Series)):
 result.to_csv(save_path + save_name, sep='\t', header=True)
 else:
 raise ValueError('Unexpected output type')
 # add information to sidecar
 sidecar['DerivativeSource'] = f.path
 sidecar['TenetoFunction'] = {}
 sidecar['TenetoFunction']['Name'] = run_func
 # For aux_input more is needed here too.
 if get_confounds == 1:
 input_params['confounds'] = 'Loaded automatically via TenetoBIDS'
 elif 'confounds' in input_params:
 input_params['confounds'] = 'Passed as argument'
 if 'sidecar' in input_params:
 input_params['sidecar'] = 'Loaded automatically via TenetoBIDS'
 # Loop through input params content and make any nparray input to list for sidecar
 sidecar['TenetoFunction']['Parameters'] = {}
 for key, value in input_params.items():
 if teneto.utils.is_jsonable(value):
 sidecar['TenetoFunction']['Parameters'][key] = input_params[key]
 else:
 if isinstance(input_params[key], np.ndarray):
 sidecar['TenetoFunction']['Parameters'][key] = input_params[key].tolist()
 else:
 print('Warning: Dropping input (' + key + ') from sidecar (not JSONable).')
 elif functype == 'on_sidecar':
 sidecar = func(**input_params)
 update_pipeline = False
 save_path = f.dirname + '/'
 save_name = f.filename
 # Save sidecar
 with open(save_path + save_name.replace('.tsv', '.json'), 'w') as f:
 json.dump(sidecar, f)
 good_files += 1
 report = '## ' + run_func + '\n'
 report += str(good_files) + ' files were included (' + \
 str(bad_files) + ' excluded from run)'
 self.report = report

 if update_pipeline:
 if functype == 'on_data':
 self.selected_pipeline = output_pipeline
 # Create new bids_filter dictionary that only contains
 # sub/ses/run/task as other tags are dropped.
 bids_filter = dict(self.bids_filter)
 self.bids_filter = {}
 bids_filters_allowed = ['subject', 'ses', 'run', 'task']
 [self.update_bids_filter({f: bids_filter[f]})
 for f in bids_filters_allowed
 if f in bids_filter]

 self.update_bids_layout()

 def _check_run_function_args(self, func, input_params, functype):
 """
 Helper function for TenetoBIDS.run.

 Function checks that the input parametes match the function.

 Returns
 ========
 funcparams : dict
 parameters of the input function
 get_confounds : bool
 1 if confound files need to be loaded.
 """
 sig = inspect.signature(func)
 funcparams = sig.parameters.items()
 required_args = 0
 input_args = 0
 for p_name, p in funcparams:
 if p.default == inspect._empty:
 required_args += 1
 if p_name in input_params:
 input_args += 1
 get_confounds = 0
 expected_arg_defecit = 1
 if 'sidecar' in dict(funcparams) and functype == 'on_data':
 expected_arg_defecit += 1
 # Calculate the different betwee n required and input arguments
 arg_diff = required_args - input_args
 if arg_diff != expected_arg_defecit:
 # Three conditoinals to be met in order to get confounds
 confounds_not_input = 'confounds' not in input_params
 confounds_in_func = 'confounds' in dict(funcparams)
 arg_needed = arg_diff == expected_arg_defecit + 1
 if confounds_not_input and confounds_in_func and arg_needed:
 # Get confounds automatically
 get_confounds = 1
 else:
 raise ValueError(
 'Expecting one unspecified input argument.\
 Enter all required input arguments in input_params except for the data files.')
 return funcparams, get_confounds

[docs] def get_selected_files(self, output=None):
 """
 Uses information in selected_pipeline and the bids layout and shows the files that will be processed when calling TenetoBIDS.run().

 If you specify a particular output, it will tell you which files will get selected for that output
 """
 if output is not None:
 filters = self.tenetobids_structure[output]['input']
 else:
 # input can only be these files
 filters = {'extension': ['.tsv', '.nii', '.nii.gz']}
 # Add predefined filters to the check
 filters.update(self.bids_filter)
 return self.BIDSLayout.get(scope=self.selected_pipeline, **filters)

[docs] def get_run_options(self, for_selected=True):
 """Returns the different function names that can be called using TenetoBIDS.run()

 Parameters
 ===========
 for_selected : bool
 If True, only return run options for the selected files.
 If False, returns all options.

 Returns
 ========
 options : str
 a list of options that can be run.
 """
 funcs = self.tenetobids_structure.keys()
 if for_selected:
 funcs_filter = []
 files = self.get_selected_files()
 suffix = [f.get_entities()['suffix'] for f in files]
 suffix = list(np.unique(suffix))
 for t in list(funcs):
 s = self.tenetobids_structure[t]['input']['suffix']
 if isinstance(s, str):
 s = [s]
 for su in suffix:
 if su in s:
 funcs_filter.append(t)
 funcs = sorted(list(set(funcs_filter)))
 return ', '.join(funcs)

[docs] def update_bids_filter(self, filter_addons):
 """Updates TenetoBIDS.bids_filter

 Parameters
 ==========
 filter_addons : dict
 dictionary that updates TenetoBIDS.bids_filter
 """
 self.bids_filter.update(filter_addons)

[docs] def get_aux_file(self, bidsfile, filetype='confounds'):
 """Tries to automatically get auxiliary data for input files, and loads it

 Paramters
 ==========
 bidsfile : BIDSDataFile or BIDSImageFile
 The BIDS file that the confound file is gong to be matched.
 filetype : string
 Can be confounds, events.
 Specified if you want to get the confound or events data.
 """
 if filetype == 'confounds':
 suffix = 'regressors'
 elif filetype == 'events':
 suffix = 'events'
 else:
 raise ValueError('unknown file type')
 # Get the entities of the filename
 file_entities = bidsfile.get_entities()
 # Ensure that the extension and suffix are correct
 file_entities['suffix'] = suffix
 file_entities['extension'] = '.tsv'
 if 'desc' in file_entities:
 file_entities.pop('desc')
 auxfile = self.BIDSLayout.get(**file_entities)
 if len(auxfile) == 0:
 raise ValueError('Non auxiliary file (type: ' + filetype + ') found')
 elif len(auxfile) > 1:
 raise ValueError('More than one auxiliary file (type: ' + filetype + ') found')
 # Load the aux file
 aux = load_tabular_file(
 auxfile[0].dirname + '/' + auxfile[0].filename, index_col=False)
 return aux

[docs] def load_data(self, bids_filter=None):
 """Returns data, default is the input data.

 bids_filter : dict
 default is None. If set, load data will load all files found by the bids_filter.
 Any preset BIDS filter is used as well, but will get overwritten by this input.
 """
 if bids_filter is None:
 files = self.get_selected_files()
 else:
 filters = dict(self.bids_filter)
 filters.update(bids_filter)
 files = self.BIDSLayout.get(**filters)
 data = {}
 for f in files:
 if f.filename in data:
 raise ValueError('Same name appears twice in selected files')
 data[f.filename], _ = self.load_file(f)
 return data

[docs] def load_file(self, bidsfile):
 """Aux function to load the data and sidecar from a BIDSFile

 Paramters
 ==========
 bidsfile : BIDSDataFile or BIDSImageFile
 The BIDS file that the confound file is gong to be matched.

 """
 # Get sidecar and see if file has been rejected at a previous step
 # (note sidecar could be called in input_files, but this will require loading sidecar twice)
 sidecar = get_sidecar(bidsfile.dirname + '/' + bidsfile.filename)
 if not sidecar['BadFile']:
 if hasattr(bidsfile, 'get_image'):
 data = bidsfile.get_image()
 elif hasattr(bidsfile, 'get_df'):
 # This can be changed if/when pybids is updated. Assumes index_col=0 in tsv file
 data = load_tabular_file(
 bidsfile.dirname + '/' + bidsfile.filename)
 else:
 data = None
 # Since temporal networks are currently saved in 2D collapsed arrays
 # The following checks if they should be resized, and resizes
 if '_temporalconnectivity.tsv' in bidsfile.filename:
 dimord = sidecar['TenetoFunction']['Parameters']['params']['dimord']
 if (self.nettsv == 'nn-t' or dimord == 'node,time'):
 n_nodes = int(np.sqrt(data.shape[0]))
 n_time = data.shape[1]
 data = data.values.reshape([n_nodes, n_nodes, n_time])
 print(data.shape)
 return data, sidecar

[docs] def troubleshoot(self, stepname, status):
 """
 Prints ongoing info to assist with troubleshooting
 """
 print('******** TROUBLESHOOT STEP: ' + stepname + ', start ********')
 for step in status:
 print('++++++++')
 print(step)
 print('------')
 print(status[step])
 print('++++++++')
 print('******** TROUBLESHOOT STEP: ' + stepname + ', end ********')

[docs] def load_events(self):
 """
 Loads event data for selected files
 """
 input_files = self.get_selected_files()
 events = {}
 for f in input_files:
 events[f.filename] = self.get_aux_file(f, filetype='events')
 return events

 Source code for teneto.classes.network

"""The TemporalNetwork class in teneto is a way of representing network objects."""

import inspect
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from ..utils import df_to_array, gen_nettype, binarize,\
 df_drop_ij_duplicates, get_network_when, set_diagonal
from .. import networkmeasures
from .. import generatenetwork
from .. import plot

[docs]class TemporalNetwork:
 """
 A class for temporal networks.

 This class allows to call different teneto functions within the class and store the network representation.

 Parameters
 ============

 N : int
 number of nodes in network
 T : int
 number of time-points in network
 nettype : str
 description of network. Can be: bu, bd, wu, wd where the letters stand for binary, weighted, undirected and directed.
 Default is weighted and undirected.
 from_df : pandas df
 input data frame with i,j,t,[weight] columns
 from_array : array
 input data from an array with dimesnions node,node,time
 from_dict : dict
 input data is a contact sequence dictionary.
 from_edgelist : list
 input data is a list of lists where each item in main list consists of [i,j,t,[weight]].
 timetype : str
 discrete or continuous
 diagonal : bool
 if the diagonal should be included in the edge list.
 timeunit : str
 string (used in plots)
 desc : str
 string to describe network.
 startime : int
 integer represents time of first index.
 nodelabels : list
 list of labels for naming the nodes
 timelabels : list
 list of labels for time-points
 hdf5 : bool
 if true, pandas dataframe is stored and queried as a h5 file.
 hdf5path : str
 Where the h5 files is saved if hdf5 is True. If left unset, the default is ./teneto_temporalnetwork.h5
 forcesparse : bool
 When forsesparse if False (default),
 if importing array and if dense_threshold% (default%) edges are present, tnet.network is an array.
 If forsesparse is True, then this inhibts arrays being created.
 dense_threshold: float
 If forsesparse == False, what percentage (as a decimal) of edges need to be present in order for representation to be dense.
 """

 def __init__(self, N=None, T=None, nettype=None, from_df=None, from_array=None, from_dict=None, from_edgelist=None, timetype=None, diagonal=False,
 timeunit=None, desc=None, starttime=None, nodelabels=None, timelabels=None, hdf5=False, hdf5path=None, forcesparse=False, dense_threshold=0.25):
 # Check inputs
 if nettype:
 if nettype not in ['bu', 'bd', 'wu', 'wd']:
 raise ValueError(
 'Nettype string must be: \'bu\', \'bd\', \'wu\' or \'wd\' for binary, weighted, undirected and directed.')

 inputvars = locals()
 if sum([1 for n in inputvars.keys() if 'from' in n and inputvars[n] is not None]) > 1:
 raise ValueError('Cannot import from two sources at once.')

 if from_array is not None:
 self._check_input(from_array, 'array')

 if from_dict is not None:
 self._check_input(from_dict, 'dict')

 if from_edgelist is not None:
 self._check_input(from_edgelist, 'edgelist')

 if N:
 if not isinstance(N, int):
 raise ValueError('Number of nodes must be an interger')

 if T:
 if not isinstance(T, int):
 raise ValueError('Number of time-points must be an interger')

 if N is None:
 self.N = 0
 else:
 self.N = int(N)
 if T is None:
 self.T = 0
 else:
 self.T = int(T)

 if timetype:
 if timetype not in ['discrete', 'continuous']:
 raise ValueError(
 'timetype must be \'discrete\' or \'continuous\'')
 self.timetype = timetype

 if hdf5:
 if hdf5path is None:
 hdf5path = './teneto_temporalnetwork.h5'
 if hdf5path[:-3:] == '.h5':
 hdf5path = hdf5path[:-3]

 self.diagonal = diagonal
 self.sparse = True
 # todo - add checks that labels are ok
 if nodelabels:
 self.nodelabels = nodelabels
 else:
 self.nodelabels = None

 if timelabels:
 self.timelabels = timelabels
 else:
 self.timelabels = None

 if timeunit:
 self.timeunit = timeunit
 else:
 self.timeunit = None

 if starttime:
 self.starttime = starttime
 else:
 self.starttime = 0

 if desc:
 self.desc = desc
 else:
 self.desc = None

 if nettype:
 self.nettype = nettype

 # Input
 if from_df is not None:
 self.network_from_df(from_df)
 if from_edgelist is not None:
 self.network_from_edgelist(from_edgelist)
 elif from_array is not None:
 self.network_from_array(from_array, forcesparse=forcesparse, dense_threshold=dense_threshold)
 elif from_dict is not None:
 self.network_from_dict(from_dict)

 if not hasattr(self, 'network'):
 if nettype:
 if nettype[0] == 'w':
 colnames = ['i', 'j', 't', 'weight']
 else:
 colnames = ['i', 'j', 't']
 else:
 colnames = ['i', 'j', 't']
 self.network = pd.DataFrame(columns=colnames)

 # Update df
 self._calc_netshape()
 if not self.diagonal:
 self._drop_diagonal()
 if nettype and self.sparse:
 if nettype[1] == 'u':
 self._drop_duplicate_ij()

 self.hdf5 = False
 if hdf5:
 self.hdf5_setup(hdf5path)

 def _set_nettype(self):
 """Helper function that sets the network type"""
 # Only run if not manually set and network values exist
 if not hasattr(self, 'nettype') and len(self.network) > 0:
 # Then check if weighted
 if 'weight' in self.network.columns:
 wb = 'w'
 else:
 wb = 'b'
 # Would be good to see if there was a way to this without going to array.
 self.nettype = 'xu'
 G1 = df_to_array(
 self.network, self.netshape, self.nettype)
 self.nettype = 'xd'
 G2 = df_to_array(
 self.network, self.netshape, self.nettype)
 if np.all(G1 == G2):
 ud = 'u'
 else:
 ud = 'd'
 self.nettype = wb + ud

[docs] def network_from_array(self, array, forcesparse=False, dense_threshold=0.25):
 """
 Defines a network from an array.

 Parameters

 array : array
 3D numpy array.
 forcespace : bool
 If true, will always make the array sparse (can be slow). If false, dense form will be kept
 if more than dense_threshold% of edges are present.
 dense_threshold : float
 Threshold for when array representation is kept as an array instead of sparse.
 Only done if forcesparse is False.
 """
 if len(array.shape) == 2:
 array = np.array(array, ndmin=3).transpose([1, 2, 0])
 self._check_input(array, 'array')
 if np.sum([array == 0]) > np.prod(array.shape) * (1 - dense_threshold) or forcesparse:
 uvals = np.unique(array)
 if len(uvals) == 2 and 1 in uvals and 0 in uvals:
 i, j, t = np.where(array == 1)
 self.network = pd.DataFrame(data={'i': i, 'j': j, 't': t})
 else:
 i, j, t = np.where(array != 0)
 w = array[array != 0]
 self.network = pd.DataFrame(
 data={'i': i, 'j': j, 't': t, 'weight': w})
 self._update_network()
 else:
 self.network = np.array(array)
 self.sparse = False
 self.nettype = gen_nettype(self.network)
 self.N = int(array.shape[0])
 self.T = int(array.shape[-1])
 self.netshape = (self.N, self.T)

 def _update_network(self):
 """Helper function that updates the network info"""
 self._calc_netshape()
 self._set_nettype()
 if self.nettype:
 if self.nettype[1] == 'u':
 self._drop_duplicate_ij()
 self.network['i'] = self.network['i'].astype(int)
 self.network['j'] = self.network['j'].astype(int)

[docs] def network_from_df(self, df):
 r"""
 Defines a network from an array.

 Parameters

 array : array
 Pandas dataframe. Should have columns: \'i\', \'j\', \'t\' where i and j are node indicies and t is the temporal index.
 If weighted, should also include \'weight\'. Each row is an edge.
 """
 self._check_input(df, 'df')
 # Ensure order of columns
 df = df[['i', 'j', 't']]
 self.network = df
 self._update_network()

[docs] def network_from_edgelist(self, edgelist):
 """
 Defines a network from an array.

 Parameters

 edgelist : list of lists.
 A list of lists which are 3 or 4 in length.
 For binary networks each sublist should be [i, j ,t] where i and j are node indicies and t is the temporal index.
 For weighted networks each sublist should be [i, j, t, weight].
 """
 self._check_input(edgelist, 'edgelist')
 if len(edgelist[0]) == 4:
 colnames = ['i', 'j', 't', 'weight']
 elif len(edgelist[0]) == 3:
 colnames = ['i', 'j', 't']
 self.network = pd.DataFrame(edgelist, columns=colnames)
 self._update_network()

[docs] def network_from_dict(self, contact):
 """
 """
 self._check_input(contact, 'dict')
 self.network = pd.DataFrame(
 contact['contacts'], columns=['i', 'j', 't'])
 if 'values' in contact:
 self.network['weight'] = contact['values']
 self.nettype = contact['nettype']
 self.starttime = contact['t0']
 self.netshape = contact['netshape']
 if contact['nodelabels']:
 self.nodelabels = contact['nodelabels']
 if contact['timeunit']:
 self.timeunit = contact['timeunit']

 def _drop_duplicate_ij(self):
 """Drops duplicate entries from the network dataframe."""
 self.network = df_drop_ij_duplicates(self.network)

 def _drop_diagonal(self):
 """Drops self-contacts from the network dataframe."""
 if self.sparse:
 self.network = self.network.where(
 self.network['i'] != self.network['j']).dropna()
 self.network.reset_index(inplace=True, drop=True)
 else:
 self.network = set_diagonal(self.network, 0)

 def _calc_netshape(self):
 """
 Resets TemporalNetwork.netshape, TemporalNetwork.N and TemporalNetwork.T.
 N is the number of nodes.
 T is the number of time points.
 """
 if len(self.network) == 0:
 self.netshape = (0, 0)
 elif not self.sparse:
 n_nodes = int(self.network.shape[0])
 n_timepoints = int(self.network.shape[-1])
 self.netshape = (n_nodes, n_timepoints)
 else:
 n_nodes = self.network[['i', 'j']].max(axis=1).max()+1
 n_timepoints = self.network['t'].max() - self.network['t'].min() + 1
 if self.N > n_nodes:
 n_nodes = self.N
 else:
 self.N = int(n_nodes)
 if self.T > n_timepoints:
 n_timepoints = self.T
 else:
 self.T = int(n_timepoints)
 self.netshape = (int(n_nodes), int(n_timepoints))

[docs] def add_edge(self, edgelist):
 """
 Adds an edge from network.

 Parameters

 edgelist : list
 a list (or list of lists) containing the i,j and t indicies to be added. For weighted networks list should also contain a 'weight' key.

 Returns

 Updates TenetoBIDS.network dataframe with new edge
 """
 if not self.sparse:
 raise ValueError('Add edge not compatible with dense network')
 if not isinstance(edgelist[0], list):
 edgelist = [edgelist]
 self._check_input(edgelist, 'edgelist')
 if len(edgelist[0]) == 4:
 colnames = ['i', 'j', 't', 'weight']
 elif len(edgelist[0]) == 3:
 colnames = ['i', 'j', 't']
 if self.hdf5:
 with pd.HDFStore(self.network) as hdf:
 rows = hdf.get_storer('network').nrows
 hdf.append('network', pd.DataFrame(edgelist, columns=colnames, index=np.arange(
 rows, rows+len(edgelist))), format='table', data_columns=True)
 edgelist = np.array(edgelist)
 if np.max(edgelist[:, :2]) > self.netshape[0]:
 self.netshape[0] = np.max(edgelist[:, :2])
 if np.max(edgelist[:, 2]) > self.netshape[1]:
 self.netshape[1] = np.max(edgelist[:, 2])
 else:
 newedges = pd.DataFrame(edgelist, columns=colnames)
 self.network = pd.concat(
 [self.network, newedges], ignore_index=True, sort=True)
 self._update_network()

[docs] def drop_edge(self, edgelist):
 """
 Removes an edge from network.

 Parameters

 edgelist : list
 a list (or list of lists) containing the i,j and t indicies to be removes.

 Returns

 Updates TenetoBIDS.network dataframe
 """
 if not isinstance(edgelist[0], list):
 edgelist = [edgelist]
 self._check_input(edgelist, 'edgelist')
 if self.hdf5:
 with pd.HDFStore(self.network) as hdf:
 for e in edgelist:
 hdf.remove(
 'network', 'i == ' + str(e[0]) + ' & ' + 'j == ' + str(e[1]) + ' & ' + 't == ' + str(e[2]))
 print('HDF5 delete warning. This will not reduce the size of the file.')
 else:
 for e in edgelist:
 idx = self.network[(self.network['i'] == e[0]) & (
 self.network['j'] == e[1]) & (self.network['t'] == e[2])].index
 self.network.drop(idx, inplace=True)
 self.network.reset_index(inplace=True, drop=True)
 self._update_network()

[docs] def calc_networkmeasure(self, networkmeasure, **measureparams):
 """
 Calculate network measure.

 Parameters

 networkmeasure : str
 Function to call. Functions available are in teneto.networkmeasures

 measureparams : kwargs
 kwargs for teneto.networkmeasure.[networkmeasure]
 """
 availablemeasures = [f for f in dir(
 networkmeasures) if not f.startswith('__')]
 if networkmeasure not in availablemeasures:
 raise ValueError(
 'Unknown network measure. Available network measures are: ' + ', '.join(availablemeasures))
 funs = inspect.getmembers(networkmeasures)
 funs = {m[0]: m[1] for m in funs if not m[0].startswith('__')}
 measure = funs[networkmeasure](self, **measureparams)
 return measure

[docs] def generatenetwork(self, networktype, **networkparams):
 """
 Generate a network

 Parameters

 networktype : str
 Function to call. Functions available are in teneto.generatenetwork

 measureparams : kwargs
 kwargs for teneto.generatenetwork.[networktype]

 Returns

 TenetoBIDS.network is made with the generated network.
 """
 availabletypes = [f for f in dir(
 generatenetwork) if not f.startswith('__')]
 if networktype not in availabletypes:
 raise ValueError(
 'Unknown network measure. Available networks to generate are: ' + ', '.join(availabletypes))
 funs = inspect.getmembers(generatenetwork)
 funs = {m[0]: m[1] for m in funs if not m[0].startswith('__')}
 network = funs[networktype](**networkparams)
 self.network_from_array(network)
 if self.nettype[1] == 'u' and self.sparse == 'True':
 self._drop_duplicate_ij()

[docs] def plot(self, plottype, ij=None, t=None, ax=None, **plotparams):
 """
 """
 if 'nodelabels' not in plotparams and self.nodelabels:
 plotparams['nodelabels'] = self.nodelabels
 if 'timeunit' not in plotparams and self.timeunit:
 plotparams['timeunit'] = self.timeunit
 if 'timelabels' not in plotparams and self.timelabels:
 plotparams['timelabels'] = self.timelabels
 availabletypes = [f for f in dir(
 plot) if not f.startswith('__')]
 if plottype not in availabletypes:
 plotalt = ', '.join(availabletypes)
 raise ValueError('Unknown network measure. Available plotting functions are: ' + plotalt)
 funs = inspect.getmembers(plot)
 funs = {m[0]: m[1] for m in funs if not m[0].startswith('__')}
 if ij is None:
 ij = np.arange(self.netshape[0]).tolist()
 if t is None:
 t = np.arange(self.netshape[1]).tolist()
 if not ax:
 _, ax = plt.subplots(1)
 data_plot = get_network_when(self, ij=ij, t=t)
 data_plot = df_to_array(
 data_plot, self.netshape, self.nettype)
 ax = funs[plottype](data_plot, ax=ax, **plotparams)
 return ax

[docs] def hdf5_setup(self, hdf5path):
 """
 """
 hdf = pd.HDFStore(hdf5path)
 hdf.put('network', self.network, format='table', data_columns=True)
 hdf.close()
 self.hdf5 = True
 self.network = hdf5path

[docs] def get_network_when(self, **kwargs):
 """
 """
 return get_network_when(self, **kwargs)

[docs] def df_to_array(self, start_at='auto'):
 """
 Turns datafram to array.
 See teneto.utils.df_to_array for more information.

 Parameters
 ==========
 start_at : str
 'min' or 'zero'.
 If auto, the 0th time-point is tnet.starttime.
 If min, the 0th time-point in the array is the minimum time-point found.
 If zero, the 0th time-point in the array is 0.
 """
 if start_at == 'auto':
 start_at = int(self.starttime)
 return df_to_array(self.network, self.netshape, self.nettype, start_at=start_at)

[docs] def binarize(self, threshold_type, threshold_level, **kwargs):
 """
 Binarizes the network.

 Parameters

 threshold_type : str
 What type of thresholds to make binarization. Options: 'rdp', 'percent', 'magnitude'.

 threshold_level : str
 Paramter dependent on threshold type.
 If 'rdp', it is the delta (i.e. error allowed in compression).
 If 'percent', it is the percentage to keep (e.g. 0.1, means keep 10% of signal).
 If 'magnitude', it is the amplitude of signal to keep.

 See teneto.utils.binarize for kwarg arguments.

 Returns

 Updates tnet.network to be binarized

 """
 gbin = binarize(
 self.network, threshold_type, threshold_level, **kwargs)
 if self.sparse:
 gbin = process_input(
 gbin, 'G', outputformat='TN', forcesparse=True)
 self.network = gbin.network
 else:
 self.network = gbin
 self.nettype = 'b' + self.nettype[1]

 def _check_input(self, datain, datatype):
 """
 """
 if datatype == 'edgelist':
 if not isinstance(datain, list):
 raise ValueError('edgelist should be list')
 if all([len(e) == 3 for e in datain]) or all([len(e) == 4 for e in datain]):
 pass
 else:
 raise ValueError(
 'Each member in edgelist should all be a list of length 3 (i,j,t) or 4 (i,j,t,w)')
 elif datatype == 'array':
 if not isinstance(datain, np.ndarray):
 raise ValueError('Array should be numpy array')
 if len(datain.shape) == 2 or len(datain.shape) == 3:
 pass
 else:
 raise ValueError('Input array must be 2 or 3 dimensional')
 elif datatype == 'dict':
 if not isinstance(datain, dict):
 raise ValueError('Contact should be dictionary')
 if 'contacts' not in datain:
 raise ValueError('Key \'contacts\' should be in dictionary')
 elif datatype == 'df':
 if not isinstance(datain, pd.DataFrame):
 raise ValueError('Input should be Pandas Dataframe')
 if ('i' and 'j' and 't') not in datain:
 raise ValueError('Columns must be \'i\' \'j\' and \'t\'')
 else:
 raise ValueError('Unknown datatype')

 Source code for teneto.classes.workflow

"""TenetoWorkflows are a way of predefining and saving an analysis pipeline using TemporalNetworks or TenetoBIDS."""

import numpy as np
import matplotlib.pyplot as plt
import inspect
import pandas as pd
import copy
from . import TemporalNetwork, TenetoBIDS
from ..utils import get_network_when

[docs]class TenetoWorkflow():

 def __init__(self, remove_nonterminal_output=True):
 """
 Initialize TenetoWorkflow.

 Parameters:

 remove_nonterminal_output : bool
 When running, should the nonterminal output be removed when no longer
 needed (good for RAM).
 """
 self.graph = pd.DataFrame(columns={'i', 'j'})
 self.nodes = {}
 self.classdicts = {}
 self.classdicts['TemporalNetwork'] = dict(inspect.getmembers(
 TemporalNetwork, predicate=inspect.isfunction))
 self.classdicts['TenetoBIDS'] = dict(inspect.getmembers(
 TenetoBIDS, predicate=inspect.isfunction))
 self.remove_nonterminal_output = remove_nonterminal_output

[docs] def add_node(self, nodename, func, depends_on=None, params=None):
 """
 Adds a node to the workflow graph.

 Parameters

 nodename : str
 Name of the node
 func : str
 The function that is to be called.
 The alternatives here are 'TemporalNetwork' or 'TenetoBIDS',
 or any of the functions that can be called within these classes.
 depends_on : str
 which step the node depends on. If empty, is considered to preceed
 the previous step. If 'isroot' is specified, it is considered an input variable.
 params : dict
 Parameters that are passed into func.

 Note

 These functions are not run until TenetoWorkflow.run() is called.
 """
 if depends_on is None:
 if func == 'TenetoBIDS' or func == 'TemporalNetwork':
 depends_on = 'isroot'
 else:
 depends_on = 'lastnode'
 if params is None:
 params = {}
 if nodename == 'isroot':
 raise ValueError('isroot cannot be nodename')
 if nodename in self.nodes:
 raise ValueError(
 nodename + ' is already part of workflow graph. \
 Each node must have unique nodename.')
 if isinstance(depends_on, str):
 depends_on = [depends_on]
 if 'isroot' in depends_on:
 if len(depends_on) > 1:
 raise ValueError('Cannot depend on multiple steps and be root')
 elif not (func == 'TenetoBIDS' or func == 'TemporalNetwork'):
 raise ValueError(
 'root node must be TemporalNetwork or TenetoBIDS')
 if depends_on[0] == 'lastnode':
 depends_on[0] = self.graph.iloc[-1]['j']
 if len(depends_on) > 1:
 raise ValueError(
 'At present, only one dependent per step (multiple steps can \
 share the same depndent).')
 # Needs to add weights to depends_on if multiple inputs to indicate what is primary input
 for step in depends_on:
 self.graph = self.graph.append(
 {'i': step, 'j': nodename}, ignore_index=True).reset_index(drop=True)

 # make sure that the i,j ordering is kept
 self.graph = self.graph.reindex(sorted(self.graph.columns), axis=1)
 self.nodes[nodename] = {'func': func, 'params': params}

[docs] def remove_node(self, nodename):
 """
 Remove a node from the graph.

 Parameters

 nodename : str
 Name of node that is to be removed.
 """
 self.nodes.pop(nodename)
 ind = get_network_when(self.graph, ij=nodename).index
 self.graph = self.graph.drop(ind).reset_index(drop=True)

 # Could add checks to see if network is broken

[docs] def calc_runorder(self):
 """Calculate the run order of the different nodes on the graph."""
 not_run = self.graph['i'].tolist() + self.graph['j'].tolist()
 not_run = list(set(not_run))
 not_run.remove('isroot')
 run = ['isroot']
 levels = 0
 run_level = []
 needed_at = {}
 while len(not_run) > 0:
 candidate_steps = get_network_when(
 self.graph, i=run, j=not_run, logic='and')['j'].tolist()
 remove_candidate_steps = get_network_when(
 self.graph, i=not_run, j=candidate_steps, logic='and')['j'].tolist()
 remove_candidate_steps = list(set(remove_candidate_steps))
 _ = [candidate_steps.remove(step)
 for step in remove_candidate_steps]
 for step in candidate_steps:
 run.append(step)
 not_run.remove(step)
 run_level.append(levels)
 dependencies = get_network_when(self.graph, j=step)[
 'i'].tolist()
 for d in dependencies:
 needed_at[d] = levels
 levels += 1
 run.remove('isroot')
 needed_at.pop('isroot')
 self.dependencyuntil = pd.DataFrame(
 data={'node': list(needed_at.keys()), 'level': list(needed_at.values())})
 self.runorder = pd.DataFrame(data={'node': run, 'level': run_level})

[docs] def run(self):
 """Runs the entire graph."""
 self.output_ = {}
 self.calc_runorder()
 # Can add multiprocess here over levels
 root_funcs = {'TemporalNetwork': TemporalNetwork,
 'TenetoBIDS': TenetoBIDS}
 level = 0
 for i, step in self.runorder.iterrows():
 if i == 0:
 self.output_[step['node']] = root_funcs[self.nodes[step['node']]['func']](
 **self.nodes[step['node']]['params'])
 self.pipeline = self.nodes[step['node']]['func']

 else:
 dependent_step = get_network_when(
 self.graph, j=step['node'], logic='and')['i'].tolist()
 # In future this will isolate the primary and auxillary dependent steps when multiple dependencies are allowed.
 dependent_step = dependent_step[0]
 self.output_[step['node']] = copy.copy(
 self.output_[dependent_step])
 out = getattr(self.output_[step['node']], self.nodes[step['node']]['func'])(
 **self.nodes[step['node']]['params'])
 if out is not None:
 self.output_[step['node']] = out
 if step['level'] > level and self.remove_nonterminal_output:
 self.delete_output_from_level(level)
 level = step['level']
 if self.remove_nonterminal_output:
 self.delete_output_from_level(level)

[docs] def delete_output_from_level(self, level):
 """Delete the output found after calling TenetoWorkflow.run()."""
 output_todelete = self.dependencyuntil[self.dependencyuntil['level'] == level]['node'].tolist(
)
 for node in output_todelete:
 self.output_.pop(node)

[docs] def make_workflow_figure(self, fig=None, ax=None):
 """
 Creates a figure depicting the workflow figure.

 Parameters

 fig : matplotlib
 ax : matplotlib

 if fig is used as input, ax should be too.

 Returns

 fig, ax : matplotlib
 matplotlib figure and axis
 """
 self.calc_runorder()
 levelunique = np.unique(self.runorder.level, return_counts=True)[1]
 levelnum = len(levelunique)
 levelmax = levelunique.max()
 self.runorder.level.unique()
 # if ax is None:
 fig, ax = plt.subplots(1, figsize=(levelmax*4, levelnum*2))

 coord = {}
 xmax = 0
 for level in range(levelnum):
 width = 0
 for _, node in enumerate(self.runorder[self.runorder['level'] == level].iterrows()):
 props = dict(boxstyle='round', facecolor='gainsboro', alpha=1)
 p = ax.text(
 width, levelnum-level, node[1]['node'], fontsize=14, verticalalignment='center', bbox=props)
 midpoint_x = width
 midpoint_y = levelnum - level
 coord[node[1]['node']] = [midpoint_x, midpoint_y]
 width += p.get_bbox_patch().get_extents().width + 1
 if width > xmax:
 xmax = width

 for _, n in self.graph.iterrows():
 if n['i'] == 'isroot':
 pass
 else:
 ax.plot([coord[n['i']][0], coord[n['j']][0]], [
 coord[n['i']][1], coord[n['j']][1]], zorder=-10000, color='darkgray')
 ax.axis('off')
 ax.set_ylim([0.5, levelnum])
 ax.set_xlim([0, xmax])
 return fig, ax

 Source code for teneto.communitydetection.louvain

import community
import pandas as pd
import numpy as np
from scipy.spatial.distance import jaccard
import networkx as nx
from teneto.utils import process_input, create_supraadjacency_matrix, tnet_to_nx, clean_community_indexes
from teneto.classes import TemporalNetwork
from concurrent.futures import ProcessPoolExecutor, as_completed

[docs]def temporal_louvain(tnet, resolution=1, intersliceweight=1, n_iter=100,
 negativeedge='ignore', randomseed=None, consensus_threshold=0.5,
 temporal_consensus=True, njobs=1):
 r"""
 Louvain clustering for a temporal network.

 Parameters

 tnet : array, dict, TemporalNetwork
 Input network
 resolution : int
 resolution of Louvain clustering (γ)
 intersliceweight : int
 interslice weight of multilayer clustering (ω). Must be positive.
 n_iter : int
 Number of iterations to run louvain for
 randomseed : int
 Set for reproduceability
 negativeedge : str
 If there are negative edges, what should be done with them.
 Options: 'ignore' (i.e. set to 0). More options to be added.
 consensus : float (0.5 default)
 When creating consensus matrix to average over number of iterations, keep values when the consensus is this amount.

 Returns

 communities : array (node,time)
 node,time array of community assignment

 Notes

 References

 """
 tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN')
 # Divide resolution by the number of timepoints
 #resolution = resolution / tnet.T
 supranet = create_supraadjacency_matrix(
 tnet, intersliceweight=intersliceweight)
 if negativeedge == 'ignore':
 supranet = supranet[supranet['weight'] > 0]
 nxsupra = tnet_to_nx(supranet)
 np.random.seed(randomseed)
 i = 0
 while True:
 print(i)
 i += 1
 comtmp = []
 if njobs > 1:
 with ProcessPoolExecutor(max_workers=njobs) as executor:
 job = {executor.submit(
 _run_louvain, nxsupra, resolution, tnet.N, tnet.T) for n in range(n_iter)}
 for j in as_completed(job):
 comtmp.append(j.result())
 comtmp = np.stack(comtmp)
 else:
 comtmp = np.array(
 [_run_louvain(nxsupra, resolution, tnet.N, tnet.T) for n in range(n_iter)])
 comtmp = np.stack(comtmp)
 comtmp = comtmp.transpose()
 comtmp = np.reshape(comtmp, [tnet.N, tnet.T, n_iter], order='F')
 # if n_iter == 1:
 # break
 nxsupra_old = nxsupra
 nxsupra = make_consensus_matrix(comtmp, consensus_threshold)
 # If there was no consensus, there are no communities possible, return
 if nxsupra is None:
 break
 if (nx.to_numpy_array(nxsupra, nodelist=np.arange(tnet.N*tnet.T)) == nx.to_numpy_array(nxsupra_old, nodelist=np.arange(tnet.N*tnet.T))).all():
 break
 communities = comtmp[:, :, 0]
 if temporal_consensus:
 communities = make_temporal_consensus(communities)
 return communities

def _run_louvain(nxsupra, resolution, N, T):
 comtmp = np.zeros([N*T])
 com = community.best_partition(
 nxsupra, resolution=resolution, random_state=None)
 comtmp[np.array(list(com.keys()), dtype=int)] = list(com.values())
 return comtmp

[docs]def make_consensus_matrix(com_membership, th=0.5):
 r"""
 Makes the consensus matrix.

 From multiple iterations, finds a consensus partition.
.
 Parameters

 com_membership : array
 Shape should be node, time, iteration.

 th : float
 threshold to cancel noisey edges

 Returns

 D : array
 consensus matrix
 """
 com_membership = np.array(com_membership)
 D = []
 for i in range(com_membership.shape[0]):
 for j in range(i+1, com_membership.shape[0]):
 con = np.sum((com_membership[i, :] - com_membership[j, :])
 == 0, axis=-1) / com_membership.shape[-1]
 twhere = np.where(con > th)[0]
 D += list(zip(*[np.repeat(i, len(twhere)).tolist(), np.repeat(j,
 len(twhere)).tolist(), twhere.tolist(), con[twhere].tolist()]))
 if len(D) > 0:
 D = pd.DataFrame(D, columns=['i', 'j', 't', 'weight'])
 D = TemporalNetwork(from_df=D)
 D = create_supraadjacency_matrix(D, intersliceweight=0)
 Dnx = tnet_to_nx(D)
 else:
 Dnx = None
 print(D)
 return Dnx

[docs]def make_temporal_consensus(com_membership):
 r"""
 Matches community labels accross time-points.

 Jaccard matching is in a greedy fashiong. Matching the largest community at t with the community at t-1.

 Parameters

 com_membership : array
 Shape should be node, time.

 Returns

 D : array
 temporal consensus matrix using Jaccard distance

 """
 com_membership = np.array(com_membership)
 # make first indicies be between 0 and 1.
 com_membership[:, 0] = clean_community_indexes(com_membership[:, 0])
 # loop over all timepoints, get jacccard distance in greedy manner for largest community to time period before
 for t in range(1, com_membership.shape[1]):
 ct, counts_t = np.unique(com_membership[:, t], return_counts=True)
 ct = ct[np.argsort(counts_t)[::-1]]
 c1back = np.unique(com_membership[:, t-1])
 new_index = np.zeros(com_membership.shape[0])
 for n in ct:
 if len(c1back) > 0:
 d = np.ones(int(c1back.max())+1)
 for m in c1back:
 v1 = np.zeros(com_membership.shape[0])
 v2 = np.zeros(com_membership.shape[0])
 v1[com_membership[:, t] == n] = 1
 v2[com_membership[:, t-1] == m] = 1
 d[int(m)] = jaccard(v1, v2)
 bestval = np.argmin(d)
 else:
 bestval = new_index.max() + 1
 new_index[com_membership[:, t] == n] = bestval
 c1back = np.array(np.delete(c1back, np.where(c1back == bestval)))
 com_membership[:, t] = new_index
 return com_membership

 Source code for teneto.communitymeasures.allegiance

import numpy as np

[docs]def allegiance(community):
 u"""
 Computes allience of communities.

 The allegiance matrix with values representing the probability that
 nodes i and j were assigned to the same community by time-varying clustering methods.[alleg-1]_

 parameters

 community : array
 array of community assignment of size node,time

 returns

 P : array
 module allegiance matrix, with P_ij probability that area i and j are in the same community

 Reference:

 .. [alleg-1]:

 Bassett, et al. (2013)
 “Robust detection of dynamic community structure in networks”, Chaos, 23, 1

 """
 N = community.shape[0]
 C = community.shape[1]
 T = P = np.zeros([N, N])

 for t in range(len(community[0, :])):
 for i in range(len(community[:, 0])):
 for j in range(len(community[:, 0])):
 if i == j:
 continue
 # T_ij indicates the number of times that i and j are assigned to the same community across time
 if community[i][t] == community[j][t]:
 T[i, j] += 1

 # module allegiance matrix, probability that ij were assigned to the same community
 P = (1/C)*T
 # Make diagonal nan
 np.fill_diagonal(P, np.nan)
 return P

 Source code for teneto.communitymeasures.flexibility

import numpy as np

[docs]def flexibility(communities):
 """
 Amount a node changes community

 Parameters

 communities : array
 Community array of shape (node,time)

 Returns

 flex : array
 Size with the flexibility of each node.

 Notes

 Flexbility calculates the number of times a node switches its community label during a time series [flex-1]_.
 It is normalized by the number of possible changes which could occur.
 It is important to make sure that the different community labels accross time points are not artbirary.

 References

 .. [flex-1]

 Bassett, DS, Wymbs N, Porter MA, Mucha P, Carlson JM, Grafton ST.
 Dynamic reconfiguration of human brain networks during learning.
 PNAS, 2011, 108(18):7641-6.
 """
 # Preallocate
 flex = np.zeros(communities.shape[0])
 # Go from the second time point to last, compare with time-point before
 for t in range(1, communities.shape[1]):
 flex[communities[:, t] != communities[:, t-1]] += 1
 # Normalize
 flex = flex / (communities.shape[1] - 1)
 return flex

 Source code for teneto.communitymeasures.integration

import numpy as np
from .allegiance import allegiance

[docs]def integration(temporalcommunities, staticcommunities):
 """
 Calculates the integration coefficient for each node. Measures the average probability
 that a node is in the same community as nodes from other systems.

 Parameters:

 temporalcommunities : array
 temporal communities vector (node,time)
 staticcommunities : array
 Static communities vector for each node

 Returns:

 integration_coeff : array
 integration coefficient for each node

 References:

 Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton.
 Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51.

 Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett.
 A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec
 2;11(12):e1004533.
 """

 # make sure the static and temporal communities have the same number of nodes
 staticcommunities = np.squeeze(staticcommunities)
 if staticcommunities.shape[0] != temporalcommunities.shape[0]:
 raise ValueError(
 'Temporal and static communities have different dimensions')
 if len(staticcommunities.shape) > 1:
 raise ValueError(
 'Incorrect static community shape')

 alleg = allegiance(temporalcommunities)

 integration_coeff = np.zeros(len(staticcommunities))

 # calc integration for each node
 for i, statcom in enumerate(staticcommunities):
 integration_coeff[i] = np.nanmean(alleg[i, staticcommunities != statcom])

 return integration_coeff

 Source code for teneto.communitymeasures.persistence

import numpy as np

[docs]def persistence(communities, calc='global'):
 """
 Persistence is the proportion of consecutive time-points that a temporal community is in the same community at the next time-point

 Parameters

 communities : array
 temporal communities of type: node,time (singlelabel) or node,node,time (for multilabel) communities

 calc : str
 can be 'global', 'time', or 'node'

 Returns

 persit_coeff : array
 the percentage of nodes that calculate the overall persistence (calc=global), or each node (calc=node), or for each time-point (calc=time)

 References

 Bazzi, Marya, et al. "Community detection in temporal multilayer networks, with an application to correlation networks." Multiscale Modeling & Simulation 14.1 (2016): 1-41.

 Note

 Bazzi et al present a non-normalized version with the global output.

 """

 reshape = False
 if len(communities.shape) == 3:
 ind = np.triu_indices(communities.shape[0], k=1)
 communities = communities[ind[0], ind[1], :]
 reshape = True

 if calc == 'global':
 persit_coeff = np.mean(communities[:, :-1] == communities[:, 1:])
 elif calc == 'node':
 if reshape:
 nnodes = len(np.unique(ind))
 persit_coeff = np.zeros(nnodes)
 for n in range(nnodes):
 i = np.where((ind[0] == n) | (ind[1] == n))[0]
 persit_coeff[n] = np.mean(communities[i, :-1] == communities[i, 1:])
 else:
 persit_coeff = np.mean(
 communities[:, :-1] == communities[:, 1:], axis=-1)

 elif calc == 'time':
 persit_coeff = np.hstack(
 [np.nan, np.mean(communities[:, :-1] == communities[:, 1:], axis=0)])
 return persit_coeff

 Source code for teneto.communitymeasures.promiscuity

import numpy as np

[docs]def promiscuity(communities):
 """
 Calculates promiscuity of communities.

 Promiscuity calculates the number of communities each node is a member of.
 0 entails only 1 community. 1 entails all communities [prom-1]_.

 Parameters

 communities : array
 temporal communities labels of type (node,time).
 Temporal communities labels should be non-trivial through snapshots (i.e. temporal consensus clustering should be run)

 Returns

 promiscuity_coeff : array
 promiscuity of each node

 References

 .. [prom-1]

 Papadopoulos, Lia, et al.
 "Evolution of network architecture in a granular material under compression."
 Physical Review E 94.3 (2016): 032908.

 """
 promiscuity_coeff = np.zeros(communities.shape[0])
 ncoms = len(np.unique(communities)) - 1
 for n in range(communities.shape[0]):
 promiscuity_coeff[n] = (len(np.unique(communities[n])) - 1) / ncoms
 return promiscuity_coeff

 Source code for teneto.communitymeasures.recruitment

import numpy as np
from .allegiance import allegiance

[docs]def recruitment(temporalcommunities, staticcommunities):
 """
 Calculates recruitment in relation to static communities.

 Calculates recruitment coefficient for each node.
 Recruitment coefficient is the average probability of nodes from the
 same static communities being in the same temporal communities at other time-points or during different tasks.

 Parameters:

 temporalcommunities : array
 temporal communities vector (node,time)
 staticcommunities : array
 Static communities vector for each node

 Returns:

 recruit : array
 recruitment coefficient for each node

 References:

 .. [recruit-1]

 Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton.
 Learning-Induced Autonomy of Sensorimotor Systems.
 Nat Neurosci. 2015 May;18(5):744-51.

 .. [recruit-2]

 Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional
 Cartography of Cognitive Systems.
 PLoS Comput Biol. 2015 Dec 2;11(12):e1004533.
 """
 # make sure the static and temporal communities have the same number of nodes
 staticcommunities = np.squeeze(staticcommunities)
 if staticcommunities.shape[0] != temporalcommunities.shape[0]:
 raise ValueError(
 'Temporal and static communities have different dimensions')
 if len(staticcommunities.shape) > 1:
 raise ValueError(
 'Incorrect static community shape')

 alleg = allegiance(temporalcommunities)

 recruit = np.zeros(len(staticcommunities))

 for i, statcom in enumerate(staticcommunities):
 recruit[i] = np.nanmean(alleg[i, staticcommunities == statcom])

 return recruit

 Source code for teneto.generatenetwork.rand_binomial

"""generatenetwork random binomial network"""

import numpy as np
from ..utils import graphlet2contact

[docs]def rand_binomial(size, prob, netrep='graphlet', nettype='bu', initialize='zero', netinfo=None, randomseed=None):
 """
 Creates a random binary network following a binomial distribution.

 Parameters

 size : list or array of length 2 or 3.

 Input [n,t] generates n number of nodes and t number of time points.
 Can also be of length 3 (node x node x time) but number of nodes in 3-tuple must be identical.

 prob : int or list/array of length 2.

 If int, this indicates probabability for each node becoming active (equal for all nodes).

 If tuple/list of length 2, this indicates different probabilities for edges to become active/inactive.

 The first value is "birth rate". The probability of an absent connection becoming present.

 The second value is the "death rate". This dictates the probability of an active edge remaining present.

 example : [40,60] means there is a 40% chance that a 0 will become a 1 and a 60% chance that a 1 stays a 1.

 netrep : str
 network representation: 'graphlet' (default) or 'contact'.
 nettype : str
 Weighted or directed network. String 'bu' or 'bd' (accepts 'u' and 'd' as well as b is implicit)
 initialize : float or str
 Input percentage (in decimal) for how many nodes start activated. Alternative specify 'zero' (default) for all nodes to start deactivated.
 netinfo : dict
 Dictionary for contact representaiton information.
 randomseed : int
 Set random seed.

 Returns

 net : array or dict

 Generated nework. Format depends on netrep input argument.

 Notes

 The idea of this function is to randomly determine if an edge is present.

 Option 2 of the "prob" parameter can be used to create a small autocorrelaiton
 or make sure that, once an edge has been present, it never disapears. [rb-1]_

 Examples

 >>> import teneto
 >>> import numpy as np
 >>> import matplotlib.pyplot as plt

 To make the networks a little more complex,
 the probabailities of rand_binomial can be set so differently for edges
 that have previously been active.
 Instead of passing a single integer to p, you can pass a list of 2 values.
 The first value is the probabililty for edges that,
 at t-1=0 will be active at t (is sometimes called the birth-rate).
 The second (optional) value is the probabaility of edges that,
 at t-1=1 will be active at t (sometimes called the death-rate).
 The latter value helps create an autocorrelation.
 Without it, connections will have no autocorrelation.

 Example with just birthrate

 Below we create a network with 5 nodes and 10 time-points.
 Edges have a 25% chance to appear.

 >>> np.random.seed(2017) # For reproduceability
 >>> N = 5 # Number of nodes
 >>> T = 10 # Number of timepoints
 >>> birth_rate = 0.25
 >>> G = teneto.generatenetwork.rand_binomial([N,N,T], [birth_rate])

 We can see that that edges appear randomly:

 >>> fig,ax = plt.subplots(figsize=(10,3))
 >>> ax = teneto.plot.slice_plot(G, ax, cmap='Set2')
 >>> fig.tight_layout()
 >>> fig.show()

 .. plot::

 import teneto
 import numpy as np
 import matplotlib.pyplot as plt
 np.random.seed(2017) # For reproduceability
 N = 5 # Number of nodes
 T = 10 # Number of timepoints
 birth_rate = 0.25
 G = teneto.generatenetwork.rand_binomial([N,N,T], [birth_rate])
 fig,ax = plt.subplots(figsize=(10,3))
 ax = teneto.plot.slice_plot(G, ax, cmap='Set2')
 fig.tight_layout()
 fig.show()

 Example with birthrate and deathrate

 Below we create a network with 5 nodes and 10 time-points.
 Edges have a 25% chance to appear and have a 75% chance to remain.

 >>> np.random.seed(2017) # For reproduceability
 >>> N = 5 # Number of nodes
 >>> T = 10 # Number of timepoints
 >>> birth_rate = 0.25
 >>> death_rate = 0.75
 >>> G = teneto.generatenetwork.rand_binomial([N,N,T], [birth_rate, death_rate])

 We can see the autocorrelation that this creates by plotting the network:

 >>> fig,ax = plt.subplots(figsize=(10,3))
 >>> ax = teneto.plot.slice_plot(G, ax, cmap='Set2')
 >>> fig.tight_layout()
 >>> fig.show()

 .. plot::

 import teneto
 import numpy as np
 import matplotlib.pyplot as plt
 np.random.seed(2017) # For reproduceability
 N = 5 # Number of nodes
 T = 10 # Number of timepoints
 birth_rate = 0.25
 death_rate = 0.75
 G = teneto.generatenetwork.rand_binomial([N,N,T], [birth_rate, death_rate])
 fig,ax = plt.subplots(figsize=(10,3))
 ax = teneto.plot.slice_plot(G, ax, cmap='Set2')
 fig.tight_layout()
 fig.show()

 References

 .. [rb-1]

 Clementi et al (2008) Flooding Time in edge-Markovian Dynamic Graphs *PODC*
 This function was written without reference to this paper.
 But this paper discusses a lot of properties of these types of graphs.

 """
 size = np.atleast_1d(size)
 prob = np.atleast_1d(prob)
 if len(size) == 2 or (len(size) == 3 and size[0] == size[1]):
 pass
 else:
 raise ValueError('size input should be [numberOfNodes,Time]')
 if len(prob) > 2:
 raise ValueError('input: prob must be of len 1 or len 2')
 if prob.min() < 0 or prob.max() > 1:
 raise ValueError('input: prob should be probability between 0 and 1')
 if nettype[-1] == 'u' or nettype[-1] == 'd':
 pass
 else:
 raise ValueError('nettype must be u or d')

 network_size = size[0]
 nr_time_points = size[-1]
 connmat = network_size * network_size
 if randomseed:
 np.random.seed(randomseed)
 if len(prob) == 1:
 net = np.random.binomial(1, prob, connmat * nr_time_points)
 net = net.reshape(network_size * network_size, nr_time_points)
 if len(prob) == 2:
 net = np.zeros([connmat, nr_time_points])
 if initialize == 'zero':
 pass
 else:
 edgesat0 = np.random.randint(
 0, connmat, int(np.round(initialize * (connmat))))
 net[edgesat0, 0] = 1
 for t_ind in range(0, nr_time_points - 1):
 edges_off = np.where(net[:, t_ind] == 0)[0]
 edges_on = np.where(net[:, t_ind] == 1)[0]
 update_edges_on = np.random.binomial(1, prob[0], len(edges_off))
 update_edge_off = np.random.binomial(1, prob[1], len(edges_on))
 net[edges_off, t_ind + 1] = update_edges_on
 net[edges_on, t_ind + 1] = update_edge_off
 # Set diagonal to 0
 net[np.arange(0, network_size * network_size, network_size + 1), :] = 0
 # Reshape to graphlet
 net = net.reshape([network_size, network_size, nr_time_points])
 # only keep upper left if nettype = u
 # Note this could be made more efficient by only doing (network_size*network_size/2-network_size) nodes
 # in connmat and inserted directly into upper triangular.
 if nettype[-1] == 'u':
 unet = np.zeros(net.shape)
 ind = np.triu_indices(network_size)
 unet[ind[0], ind[1], :] = np.array(net[ind[0], ind[1], :])
 unet = unet + np.transpose(unet, [1, 0, 2])
 net = unet
 if netrep == 'contact':
 if not netinfo:
 netinfo = {}
 netinfo['nettype'] = 'b' + nettype[-1]
 net = graphlet2contact(net, netinfo)
 return net

 Source code for teneto.generatenetwork.rand_poisson

"""Generatenetwork a random poisson network"""

import numpy as np
from ..utils import graphlet2contact, set_diagonal

[docs]def rand_poisson(nnodes, ncontacts, lam=1, nettype='bu', netinfo=None, netrep='graphlet'):
 """
 Generate a random network where intervals between contacts are distributed by a poisson distribution

 Parameters

 nnodes : int
 Number of nodes in networks

 ncontacts : int or list
 Number of expected contacts (i.e. edges). If list, number of contacts for each node.
 Any zeros drawn are ignored so returned degree of network can be smaller than ncontacts.

 lam : int or list
 Expectation of interval.

 nettype : str
 'bu' or 'bd'

 netinfo : dict
 Dictionary of additional information

 netrep : str
 How the output should be.

 If ncontacts is a list, so should lam.

 Returns

 net : array or dict
 Random network with intervals between active edges being Poisson distributed.

 """
 if isinstance(ncontacts, list):
 if len(ncontacts) != nnodes:
 raise ValueError(
 'Number of contacts, if a list, should be one per node')
 if isinstance(lam, list):
 if len(lam) != nnodes:
 raise ValueError(
 'Lambda value of Poisson distribution, if a list, should be one per node')
 if isinstance(lam, list) and not isinstance(ncontacts, list) or not isinstance(lam, list) and isinstance(ncontacts, list):
 raise ValueError(
 'When one of lambda or ncontacts is given as a list, the other argument must also be a list.')

 if nettype == 'bu':
 edgen = int((nnodes*(nnodes-1))/2)
 elif nettype == 'bd':
 edgen = int(nnodes*nnodes)

 if not isinstance(lam, list) and not isinstance(ncontacts, list):
 icts = np.random.poisson(lam, size=(edgen, ncontacts))
 net = np.zeros([edgen, icts.sum(axis=1).max()+1])
 for n in range(edgen):
 net[n, np.unique(np.cumsum(icts[n]))] = 1
 else:
 icts = []
 ict_max = 0
 for n in range(edgen):
 icts.append(np.random.poisson(lam[n], size=ncontacts[n]))
 if sum(icts[-1]) > ict_max:
 ict_max = sum(icts[-1])
 net = np.zeros([nnodes, ict_max+1])
 for n in range(nnodes):
 net[n, np.unique(np.cumsum(icts[n]))] = 1

 if nettype == 'bu':
 nettmp = np.zeros([nnodes, nnodes, net.shape[-1]])
 ind = np.triu_indices(nnodes, k=1)
 nettmp[ind[0], ind[1], :] = net
 net = nettmp + nettmp.transpose([1, 0, 2])
 elif nettype == 'bd':
 net = net.reshape([nnodes, nnodes, net.shape[-1]], order='F')
 net = set_diagonal(net, 0)

 if netrep == 'contact':
 if not netinfo:
 netinfo = {}
 netinfo['nettype'] = 'b' + nettype[-1]
 net = graphlet2contact(net, netinfo)

 return net

 Source code for teneto.networkmeasures.bursty_coeff

"""Bursty Coeff"""

import numpy as np
from .intercontacttimes import intercontacttimes
from ..utils import binarize
import itertools

[docs]def bursty_coeff(data, calc='edge', nodes='all', communities=None, threshold_type=None, threshold_level=None, threshold_params=None):
 u"""
 Calculates the bursty coefficient.[1][2]

 Parameters

 data : array, dict
 This is either (1) temporal network input with nettype: 'bu', 'bd'.
 (2) dictionary of ICTs (output of *intercontacttimes*).
 (3) temporal network input with nettype: 'wu', 'wd'.
 If weighted, you must also specify threshold_type and threshold_value which will make it binary.

 calc : str
 Caclulate the bursty coeff over what.
 Options include 'edge': calculate B on all ICTs between node i and j.
 (Default); 'node': caclulate B on all ICTs connected to node i.;
 'communities': calculate B for each communities (argument communities then required);
 'meanEdgePerNode': first calculate ICTs between i and j, then take the mean over all j.

 nodes: list or str
 Options: 'all': do for all nodes (default) or list of node indexes to calculate.

 communities : array, optional
 None (default) or Nx1 vector of communities assignment. This returns a "centrality" per communities instead of per node.

 threshold_type : str, optional
 If input is weighted. Specify binarizing threshold type. See teneto.utils.binarize

 threshold_level : str, optional
 If input is weighted. Specify binarizing threshold level. See teneto.utils.binarize

 threhsold_params : dict
 If input is weighted. Dictionawy with kwargs for teneto.utils.binarize

 Returns

 B : array
 Bursty coefficienct per (edge or node measure).

 Notes

 The burstiness coefficent, B, is defined in refs [1,2] as:

 .. math:: B = {{\sigma_{ICT} - \mu_{ICT}} \over {\sigma_{ICT} + \mu_{ICT}}}

 Where :math:`\sigma_{ICT}` and :math:`\mu_{ICT}` are the standard deviation and
 mean of the inter-contact times respectively (see teneto.networkmeasures.intercontacttimes)

 When B > 0, indicates bursty intercontact times.
 When B < 0, indicates periodic/tonic intercontact times.
 When B = 0, indicates random.

 Examples

 First import all necessary packages

 >>> import teneto
 >>> import numpy as np

 Now create 2 temporal network of 2 nodes and 60 time points.
 The first has periodict edges, repeating every other time-point:

 >>> G_periodic = np.zeros([2, 2, 60])
 >>> ts_periodic = np.arange(0, 60, 2)
 >>> G_periodic[:,:,ts_periodic] = 1

 The second has a more bursty pattern of edges:

 >>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
 >>> G_bursty = np.zeros([2, 2, 60])
 >>> G_bursty[:,:,ts_bursty] = 1

 The two networks look like this:

 .. plot::

 import numpy as np
 import teneto
 import matplotlib.pyplot as plt
 ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
 G_bursty = np.zeros([2, 2, 60])
 G_bursty[:,:,ts_bursty] = 1
 G_periodic = np.zeros([2, 2, 60])
 ts_periodic = np.arange(0, 60, 2)
 G_periodic[:,:,ts_periodic] = 1
 fig,ax = plt.subplots(2, 1, figsize=(10,3))
 teneto.plot.slice_plot(G_bursty, ax[0], cmap='Pastel2', nodesize=20, nLabs=['0', '1'])
 teneto.plot.slice_plot(G_periodic, ax[1], cmap='Pastel2', nodesize=20, nLabs=['0', '1'])
 ax[0].set_title('G_bursty')
 ax[1].set_title('G_periodic')
 ax[0].set_ylim([-0.25,1.25])
 ax[1].set_ylim([-0.25,1.25])
 ax[0].set_xticklabels([])
 ax[1].set_xticklabels([])
 plt.tight_layout()
 fig.show()

 Now we call bursty_coeff.

 >>> B_periodic = teneto.networkmeasures.bursty_coeff(G_periodic)
 >>> B_periodic
 array([[nan, -1.],
 [-1., nan]])

 Above we can see that between node 0 and 1, B=-1 (the diagonal is nan).
 Doing the same for the second example:

 >>> B_bursty = teneto.networkmeasures.bursty_coeff(G_bursty)
 >>> B_bursty
 array([[nan, 0.13311003],
 [0.13311003, nan]])

 gives a positive value, indicating the inter-contact times between node 0 and 1 is bursty.

 References

 .. [1]

 Goh, KI & Barabasi, AL (2008)
 Burstiness and Memory in Complex Systems. EPL (Europhysics Letters),
 81: 4 [`Link <https://arxiv.org/pdf/physics/0610233.pdf>`_]

 .. [2]
 Holme, P & Saramäki J (2012) Temporal networks.
 Physics Reports. 519: 3. [`Link <https://arxiv.org/pdf/1108.1780.pdf>`_]
 (Discrete formulation used here)

 """
 if threshold_type is not None:
 if threshold_params is None:
 threshold_params = {}
 data = binarize(data, threshold_type,
 threshold_level, **threshold_params)

 if calc == 'communities' and communities is None:
 raise ValueError(
 "Specified calc='communities' but no communities\
 argument provided (list of clusters/modules)")

 ict = 0 # are ict present
 if isinstance(data, dict):
 # This could be done better
 if [k for k in list(data.keys()) if k == 'intercontacttimes'] == ['intercontacttimes']:
 ict = 1
 # if shortest paths are not calculated, calculate them
 if ict == 0:
 data = intercontacttimes(data)

 ict_shape = data['intercontacttimes'].shape

 if len(ict_shape) == 2:
 node_len = ict_shape[0] * ict_shape[1]
 elif len(ict_shape) == 1:
 node_len = 1
 else:
 raise ValueError('more than two dimensions of intercontacttimes')

 if isinstance(nodes, list) and len(ict_shape) > 1:
 node_combinations = [[list(set(nodes))[t], list(set(nodes))[tt]] for t in range(
 0, len(nodes)) for tt in range(0, len(nodes)) if t != tt]
 do_nodes = [np.ravel_multi_index(n, ict_shape)
 for n in node_combinations]
 else:
 do_nodes = np.arange(0, node_len)

 # Reshae ICTs
 if calc == 'node':
 ict = np.concatenate(data['intercontacttimes']
 [do_nodes, do_nodes], axis=1)
 elif calc == 'communities':
 unique_communities = np.unique(communities)
 ict_shape = (len(unique_communities), len(unique_communities))
 ict = np.array([[None] * ict_shape[0]] * ict_shape[1])
 for i, s1 in enumerate(unique_communities):
 for j, s2 in enumerate(unique_communities):
 if i == j:
 ind = list(
 zip(*itertools.combinations(np.where(communities == s1)[0], 2)))
 ict[i, j] = np.concatenate(
 data['intercontacttimes'][ind[0], ind[1]])
 else:
 ict[i, j] = np.concatenate(np.concatenate(
 data['intercontacttimes'][communities == s1, :][:, communities == s2]))
 # Quick fix, but could be better
 data['intercontacttimes'] = ict
 do_nodes = np.arange(0, ict_shape[0]*ict_shape[1])

 if len(ict_shape) > 1:
 ict = data['intercontacttimes'].reshape(ict_shape[0] * ict_shape[1])
 b_coeff = np.zeros(len(ict)) * np.nan
 else:
 b_coeff = np.zeros(1) * np.nan
 ict = [data['intercontacttimes']]

 for i in do_nodes:
 if ict[i] is not None:
 mu_ict = np.mean(ict[i])
 sigma_ict = np.std(ict[i])
 b_coeff[i] = (sigma_ict - mu_ict) / (sigma_ict + mu_ict)
 else:
 b_coeff[i] = np.nan

 if len(ict_shape) > 1:
 b_coeff = b_coeff.reshape(ict_shape)
 return b_coeff

 Source code for teneto.networkmeasures.fluctuability

"""Calculates fluctuatbility"""
import numpy as np
from ..utils import process_input

[docs]def fluctuability(netin, calc='overtime'):
 r"""
 Fluctuability of temporal networks.

 This is the variation of the network's edges over time. [fluct-1]_
 This is the unique number of edges through time divided by the overall
 number of edges.

 Parameters

 netin : array or dict

 Temporal network input (graphlet or contact)
 (nettype: 'bd', 'bu', 'wu', 'wd')

 calc : str
 Version of fluctuabiility to calcualte. 'overtime'

 Returns

 fluct : array
 Fluctuability

 Notes

 Fluctuability quantifies the variability of edges.
 Given x number of edges, F is higher when those are repeated edges among
 a smaller set of edges and lower when there are distributed across more edges.

 .. math:: F = {{\sum_{i,j} H_{i,j}} \over {\sum_{i,j,t} G_{i,j,t}}}

 where :math:`H_{i,j}` is a binary matrix where it is 1 if there is at
 least one t such that G_{i,j,t} = 1 (i.e. at least one temporal edge exists).

 F is not normalized which makes comparisions of F across very different
 networks difficult (could be added).

 Examples

 This example compares the fluctability of two different networks with the same number of edges.
 Below two temporal networks, both with 3 nodes and 3 time-points.
 Both get 3 connections.

 >>> import teneto
 >>> import numpy as np
 >>> # Manually specify node (i,j) and temporal (t) indicies.
 >>> ind_highF_i = [0,0,1]
 >>> ind_highF_j = [1,2,2]
 >>> ind_highF_t = [1,2,2]
 >>> ind_lowF_i = [0,0,0]
 >>> ind_lowF_j = [1,1,1]
 >>> ind_lowF_t = [0,1,2]
 >>> # Define 2 networks below and set above edges to 1
 >>> G_highF = np.zeros([3,3,3])
 >>> G_lowF = np.zeros([3,3,3])
 >>> G_highF[ind_highF_i,ind_highF_j,ind_highF_t] = 1
 >>> G_lowF[ind_lowF_i,ind_lowF_j,ind_lowF_t] = 1

 The two different networks look like this:

 .. plot::

 import teneto
 import numpy as np
 import matplotlib.pyplot as plt
 # Manually specify node (i,j) and temporal (t) indicies.
 ind_highF_i = [0,0,1]
 ind_highF_j = [1,2,2]
 ind_highF_t = [1,2,2]
 ind_lowF_i = [0,0,0]
 ind_lowF_j = [1,1,1]
 ind_lowF_t = [0,1,2]
 # Define 2 networks below and set above edges to 1
 G_highF = np.zeros([3,3,3])
 G_lowF = np.zeros([3,3,3])
 G_highF[ind_highF_i,ind_highF_j,ind_highF_t] = 1
 G_lowF[ind_lowF_i,ind_lowF_j,ind_lowF_t] = 1
 fig, ax = plt.subplots(1,2)
 teneto.plot.slice_plot(G_highF, ax[0], cmap='Pastel2', nodesize=20, nLabs=['0', '1', '2'])
 teneto.plot.slice_plot(G_lowF, ax[1], cmap='Pastel2', nodesize=20, nLabs=['0', '1', '2'])
 ax[0].set_title('G_highF')
 ax[1].set_title('G_lowF')
 ax[0].set_ylim([-0.25,2.25])
 ax[1].set_ylim([-0.25,2.25])
 plt.tight_layout()
 fig.show()

 Now calculate the fluctability of the two networks above.

 >>> F_high = teneto.networkmeasures.fluctuability(G_highF)
 >>> F_high
 1.0
 >>> F_low = teneto.networkmeasures.fluctuability(G_lowF)
 >>> F_low
 0.3333333333333333

 Here we see that the network with more unique connections has the higher fluctuability.

 Reference

 .. [fluct-1]

 Thompson et al (2017)
 "From static to temporal network theory applications to
 functional brain connectivity." Network Neuroscience, 2:
 1. p.69-99
 [`Link <https://www.mitpressjournals.org/doi/abs/10.1162/NETN_a_00011>`_]

 """
 # Get input type (C or G)
 netin, _ = process_input(netin, ['C', 'G', 'TN'])

 netin[netin != 0] = 1
 unique_edges = np.sum(netin, axis=2)
 unique_edges[unique_edges > 0] = 1
 unique_edges[unique_edges == 0] = 0

 fluct = (np.sum(unique_edges)) / np.sum(netin)
 return fluct

 Source code for teneto.networkmeasures.intercontacttimes

"""Calculates intercontacttimes"""

import numpy as np
from ..utils import process_input

[docs]def intercontacttimes(tnet):
 """
 Calculates the intercontacttimes of each edge in a network.

 Parameters

 tnet : array, dict
 Temporal network (craphlet or contact). Nettype: 'bu',

 Returns

 contacts : dict
 Intercontact times as numpy array in dictionary. contacts['intercontacttimes']

 Notes

 The inter-contact times is calculated by the time between consequecutive "active" edges (where active means
 that the value is 1 in a binary network).

 Examples

 This example goes through how inter-contact times are calculated.

 >>> import teneto
 >>> import numpy as np

 Make a network with 2 nodes and 4 time-points with 4 edges spaced out.

 >>> G = np.zeros([2,2,10])
 >>> edge_on = [1,3,5,9]
 >>> G[0,1,edge_on] = 1

 The network visualised below make it clear what the inter-contact times are between the two nodes:

 .. plot::

 import teneto
 import numpy as np
 import matplotlib.pyplot as plt
 G = np.zeros([2,2,10])
 edge_on = [1,3,5,9]
 G[0,1,edge_on] = 1
 fig, ax = plt.subplots(1, figsize=(4,2))
 teneto.plot.slice_plot(G, ax=ax, cmap='Pastel2')
 ax.set_ylim(-0.25, 1.25)
 plt.tight_layout()
 fig.show()

 Calculating the inter-contact times of these edges becomes: 2,2,4 between nodes 0 and 1.

 >>> ict = teneto.networkmeasures.intercontacttimes(G)

 The function returns a dictionary with the icts in the key: intercontacttimes. This is of the size NxN.
 So the icts between nodes 0 and 1 are found by:

 >>> ict['intercontacttimes'][0,1]
 array([2, 2, 4])

 """
 # Process input
 tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN', forcesparse=True)

 if tnet.nettype[0] == 'w':
 print('WARNING: assuming connections to be binary when computing intercontacttimes')

 # Each time series is padded with a 0 at the start and end.g Then t[0:-1]-[t:].
 # Then discard the noninformative ones (done automatically)
 # Finally return back as np array
 contacts = np.array([[None] * tnet.netshape[0]] * tnet.netshape[0])

 def calc_ict(group):
 return np.array(group['t'][1:].values - group['t'][:-1].values)

 gnet = tnet.network.sort_values('t').groupby(['i', 'j'])
 contacts_tmp = gnet.apply(calc_ict)
 index = contacts_tmp.index.to_list()
 index = np.array(index)
 contacts[index[:, 0], index[:, 1]] = contacts_tmp.to_numpy()
 if tnet.nettype[1] == 'u':
 contacts[index[:, 1], index[:, 0]] = contacts_tmp.to_numpy()

 # contacts[index[:, 0], index[: 1]]
 # i = list(zip(*index))
 # contacts_tmp.to_numpy()
 # t1 = time.time()
 # if tnet.nettype[1] == 'u':
 # for i in range(tnet.netshape[0]):
 # for j in range(i + 1, tnet.netshape[0]):
 # edge_on = tnet.get_network_when(i=i, j=j)['t'].values
 # if len(edge_on) > 0:
 # edge_on_diff = edge_on[1:] - edge_on[:-1]
 # contacts[i, j] = np.array(edge_on_diff)
 # contacts[j, i] = np.array(edge_on_diff)
 # else:
 # contacts[i, j] = []
 # contacts[j, i] = []
 # print(time.time() - t1)
 # elif tnet.nettype[1] == 'd':
 # for i in range(tnet.netshape[0]):
 # for j in range(tnet.netshape[0]):
 # edge_on = tnet.get_network_when(i=i, j=j)['t'].values
 # if len(edge_on) > 0:
 # edge_on_diff = edge_on[1:] - edge_on[:-1]
 # contacts[i, j] = np.array(edge_on_diff)
 # else:
 # contacts[i, j] = []

 return {'intercontacttimes': contacts, 'nettype': tnet.nettype}

 Source code for teneto.networkmeasures.local_variation

"""Networkmeasure: local_variation"""

import numpy as np
from .intercontacttimes import intercontacttimes

[docs]def local_variation(data):
 r"""
 Calculates the local variaiont of inter-contact times. [LV-1]_, [LV-2]_

 Parameters

 data : array, dict
 This is either (1) temporal network input (graphlet or contact) with nettype: 'bu', 'bd'.
 (2) dictionary of ICTs (output of *intercontacttimes*).

 Returns

 LV : array
 Local variation per edge.

 Notes

 The local variation is like the bursty coefficient and quantifies if a series of inter-contact times are periodic, random or Poisson distributed or bursty.

 It is defined as:

 .. math:: LV = {3 \over {n-1}}\sum_{i=1}^{n-1}{{{\iota_i - \iota_{i+1}} \over {\iota_i + \iota_{i+1}}}^2}

 Where :math:`\iota` are inter-contact times and i is the index of the inter-contact time (not a node index).
 n is the number of events, making n-1 the number of inter-contact times.

 The possible range is: :math:`0 \geq LV \gt 3`.

 When periodic, LV=0, Poisson, LV=1 Larger LVs indicate bursty process.

 Examples

 First import all necessary packages

 >>> import teneto
 >>> import numpy as np

 Now create 2 temporal network of 2 nodes and 60 time points. The first has periodict edges, repeating every other time-point:

 >>> G_periodic = np.zeros([2, 2, 60])
 >>> ts_periodic = np.arange(0, 60, 2)
 >>> G_periodic[:,:,ts_periodic] = 1

 The second has a more bursty pattern of edges:

 >>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
 >>> G_bursty = np.zeros([2, 2, 60])
 >>> G_bursty[:,:,ts_bursty] = 1

 Now we call local variation for each edge.

 >>> LV_periodic = teneto.networkmeasures.local_variation(G_periodic)
 >>> LV_periodic
 array([[nan, 0.],
 [0., nan]])

 Above we can see that between node 0 and 1, LV=0 (the diagonal is nan).
 This is indicative of a periodic contacts (which is what we defined).
 Doing the same for the second example:

 >>> LV_bursty = teneto.networkmeasures.local_variation(G_bursty)
 >>> LV_bursty
 array([[nan, 1.28748748],
 [1.28748748, nan]])

 When the value is greater than 1, it indicates a bursty process.

 nans are returned if there are no intercontacttimes

 References

 .. [LV-1]

 Shinomoto et al (2003)
 Differences in spiking patterns among cortical neurons.
 Neural Computation 15.12
 [`Link <https://www.mitpressjournals.org/doi/abs/10.1162/089976603322518759>`_]

 .. [LV-2]

 Followed eq., 4.34 in Masuda N & Lambiotte (2016)
 A guide to temporal networks. World Scientific.
 Series on Complex Networks. Vol 4
 [`Link <https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001>`_]

 """
 ict = 0 # are ict present
 if isinstance(data, dict):
 # This could be done better
 if [k for k in list(data.keys()) if k == 'intercontacttimes'] == ['intercontacttimes']:
 ict = 1
 # if shortest paths are not calculated, calculate them
 if ict == 0:
 data = intercontacttimes(data)

 if data['nettype'][1] == 'u':
 ind = np.triu_indices(data['intercontacttimes'].shape[0], k=1)
 if data['nettype'][1] == 'd':
 triu = np.triu_indices(data['intercontacttimes'].shape[0], k=1)
 tril = np.tril_indices(data['intercontacttimes'].shape[0], k=-1)
 ind = [[], []]
 ind[0] = np.concatenate([tril[0], triu[0]])
 ind[1] = np.concatenate([tril[1], triu[1]])
 ind = tuple(ind)

 ict_shape = data['intercontacttimes'].shape

 lv = np.zeros(ict_shape)

 for n in range(len(ind[0])):
 icts = data['intercontacttimes'][ind[0][n], ind[1][n]]
 # make sure there is some contact
 if icts is not None:
 lv_nonnorm = np.sum(
 np.power((icts[:-1] - icts[1:]) / (icts[:-1] + icts[1:]), 2))
 lv[ind[0][n], ind[1][n]] = (3/len(icts)) * lv_nonnorm
 else:
 lv[ind[0][n], ind[1][n]] = np.nan

 # Make symetric if undirected
 if data['nettype'][1] == 'u':
 lv = lv + lv.transpose()

 for n in range(lv.shape[0]):
 lv[n, n] = np.nan

 return lv

 Source code for teneto.networkmeasures.reachability_latency

"""
Reachability latency.
"""

import numpy as np
from .shortest_temporal_path import shortest_temporal_path

[docs]def reachability_latency(tnet=None, paths=None, rratio=1, calc='global'):
 """
 Reachability latency. This is the r-th longest temporal path.

 Parameters

 data : array or dict

 Can either be a network (graphlet or contact), binary unidrected only.
 Alternative can be a paths dictionary (output of teneto.networkmeasure.shortest_temporal_path)

 rratio: float (default: 1)
 reachability ratio that the latency is calculated in relation to.
 Value must be over 0 and up to 1.
 1 (default) - all nodes must be reached.
 Other values (e.g. .5 imply that 50% of nodes are reached)
 This is rounded to the nearest node inter.
 E.g. if there are 6 nodes [1,2,3,4,5,6], it will be node 4 (due to round upwards)

 calc : str
 what to calculate. Alternatives: 'global' entire network; 'nodes': for each node.

 Returns

 reach_lat : array
 Reachability latency

 Notes

 Reachability latency calculates the time it takes for the paths.

 """
 if tnet is not None and paths is not None:
 raise ValueError('Only network or path input allowed.')
 if tnet is None and paths is None:
 raise ValueError('No input.')
 # if shortest paths are not calculated, calculate them
 if tnet is not None:
 paths = shortest_temporal_path(tnet)

 pathmat = np.zeros([paths[['from', 'to']].max().max(
)+1, paths[['from', 'to']].max().max()+1, paths[['t_start']].max().max()+1]) * np.nan
 pathmat[paths['from'].values, paths['to'].values,
 paths['t_start'].values] = paths['temporal-distance']

 netshape = pathmat.shape

 edges_to_reach = netshape[0] - np.round(netshape[0] * rratio)

 reach_lat = np.zeros([netshape[1], netshape[2]]) * np.nan
 for t_ind in range(0, netshape[2]):
 paths_sort = -np.sort(-pathmat[:, :, t_ind], axis=1)
 reach_lat[:, t_ind] = paths_sort[:, edges_to_reach]
 if calc == 'global':
 reach_lat = np.nansum(reach_lat)
 reach_lat = reach_lat / ((netshape[0]) * netshape[2])
 elif calc == 'nodes':
 reach_lat = np.nansum(reach_lat, axis=1)
 reach_lat = reach_lat / (netshape[2])
 return reach_lat

[docs]def reachability_ratio(paths):
 return len(paths['temporal-distance'].dropna())/len(paths)

 Source code for teneto.networkmeasures.shortest_temporal_path

"""Functions to calculate the shortest temporal path."""
import numpy as np
from teneto.utils import process_input
import itertools
import pandas as pd

[docs]def seqpath_to_path(pairseq, source):
 # seq must be a path sequence (i.e. possible paths per timepoint)
 # convert the sequence of pairs to a n x 2 array
 pairrows = np.reshape(pairseq, [int(len(pairseq)/2), 2])
 queue = [(0, [0])]
 # if source is in the first tuple, return
 if source in pairrows[0]:
 yield [pairrows[0].tolist()]
 while queue:
 # Set the queue
 (node, path) = queue.pop(0)
 # Get all remaining possible paths in sequence
 iterset = set(np.where((pairrows == pairrows[node, 0]) | (
 pairrows == pairrows[node, 1]))[0]) - set(range(node+1))
 for nextset in iterset:
 if source in pairrows[nextset]:
 yield list(reversed(pairrows[path + [nextset]].tolist()))
 else:
 queue.append((nextset, path + [nextset]))

[docs]def shortest_path_from_pairseq(pairseq, source):
 try:
 return next(seqpath_to_path(pairseq, source))
 except StopIteration:
 return None

[docs]def shortest_temporal_path(tnet, steps_per_t='all', i=None, j=None, it=None, minimise='temporal_distance'):
 """
 Shortest temporal path

 Parameters

 tnet : tnet obj, array or dict
 input network. nettype: bu, bd.

 steps_per_t : int or str
 If str, should be 'all'.
 How many edges can be travelled during a single time-point.

 i : list
 List of node indicies to restrict analysis. These are nodes the paths start from. Default is all nodes.

 j : list
 List of node indicies to restrict analysis. There are nodes the paths end on. Default is all nodes.

 it : None, int, list
 Time points for parts.
 Either None (default) which takes all time points,
 an integer to indicate which time point to start at,
 or a list of time-points that is included in analysis
 (including end time-point).

 minimise : str
 Can be "temporal_distance", returns the path that has the smallest temporal distance.
 It is possible there can be a path that is a smaller
 topological distance (this option currently not available).

 Returns

 paths : pandas df
 Dataframe consisting of information about all the paths found.

 Notes

 The shortest temporal path calculates the temporal and topological distance there to be a path between nodes.

 The argument steps_per_t allows for multiple nodes to be travelled per time-point.

 Topological distance is the number of edges that are travelled. Temporal distance is the number of time-points.

 This function returns the path that is the shortest temporal distance away.

 Examples

 Let us start by creating a small network.

 >>> import numpy as np
 >>> import matplotlib.pyplot as plt
 >>> import teneto
 >>> G = np.zeros([4, 4, 3])
 >>> G[0, 1, [0, 2]] = 1
 >>> G[0, 3, [2]] = 1
 >>> G[1, 2, [1]] = 1
 >>> G[2, 3, [1]] = 1

 Let us look at this network to see what is there.

 >>> fig, ax = plt.subplots(1)
 >>> ax = teneto.plot.slice_plot(G, ax, nodelabels=[0,1,2,3], timelabels=[0,1,2], cmap='Set2')
 >>> plt.tight_layout()
 >>> fig.show()

 .. plot::

 import numpy as np
 import matplotlib.pyplot as plt
 import teneto
 G = np.zeros([4, 4, 3])
 G[0, 1, [0, 2]] = 1
 G[0, 3, [2]] = 1
 G[1, 2, [1]] = 1
 G[2, 3, [1]] = 1
 fig,ax = plt.subplots(1)
 teneto.plot.slice_plot(G,ax,nodelabels=[0,1,2,3],timelabels=[0,1,2],cmap='Set2')
 plt.tight_layout()
 fig.show()

 Here we can visualize what the shortest paths are.
 Let us start by starting at
 node 0 we want to find the path to node 3, starting at time 0. To do this we write:

 >>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0)
 >>> sp['temporal-distance']
 0 2
 Name: temporal-distance, dtype: int64
 >>> sp['topological-distance']
 0 3
 Name: topological-distance, dtype: int64
 >>> sp['path includes']
 0 [[0, 1], [1, 2], [2, 3]]
 Name: path includes, dtype: object

 Here we see that the shortest path takes 3 steps (topological distance of 3) at 2 time points.

 It starts by going from node 0 to 1 at t=0, then 1 to 2 and 2 to 3 at t=1.
 We can see all the nodes
 that were travelled in the "path includes" list.

 In the above example, it was possible to traverse multiple edges at a single time-point.
 It is possible to restrain that by setting the steps_per_t argument

 >>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0, steps_per_t=1)
 >>> sp['temporal-distance']
 0 3
 Name: temporal-distance, dtype: int64
 >>> sp['topological-distance']
 0 1
 Name: topological-distance, dtype: int64
 >>> sp['path includes']
 0 [[0, 3]]
 Name: path includes, dtype: object

 Here we see that the path is now only one edge, 0 to 3 at t=2.
 The quicker path is no longer possible.

 """

 tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN')

 # If i, j or it are inputs, process them
 if i is None:
 source_nodes = np.arange(tnet.netshape[0])
 elif isinstance(i, int):
 source_nodes = [i]
 elif isinstance(i, list):
 source_nodes = i
 else:
 raise ValueError('Unknown i input. Should be None, int or list')
 if j is None:
 target_nodes = np.arange(tnet.netshape[0])
 elif isinstance(j, int):
 target_nodes = [j]
 elif isinstance(j, list):
 target_nodes = j
 else:
 raise ValueError('Unknown j input. Should be None, int or list')
 if it is None:
 time_points = np.arange(tnet.netshape[1])
 elif isinstance(it, int):
 time_points = [it]
 elif isinstance(it, list):
 time_points = it
 else:
 raise ValueError('Unknown t input. Should be None, int or list')

 # Two step process.
 # First, get what the network can reach per timepoint.
 # Second, check all possible sequences of what the network can reach for the shortest sequence.
 paths = []
 for source in source_nodes:
 for target in target_nodes:
 if target == source:
 pass
 else:
 for tstart in time_points:
 # Part 1 starts here
 ij = [source]
 t = tstart
 step = 1
 lenij = 1
 pairs = []
 stop = 0
 while stop == 0:
 # Only select i if directed, ij if undirected.
 if tnet.nettype[1] == 'u':
 network = tnet.get_network_when(ij=list(ij), t=t)
 elif tnet.nettype[1] == 'd':
 network = tnet.get_network_when(i=list(ij), t=t)
 new_nodes = network[['i', 'j']].values
 if len(new_nodes) != 0:
 pairs.append(new_nodes.tolist())
 new_nodes = new_nodes.flatten()
 ij = np.hstack([ij, new_nodes])
 ij = np.unique(ij)
 if minimise == 'temporal_distance' and target in ij:
 stop = 1
 elif minimise == 'topology' and t == tnet.netshape[1] and target in ij:
 stop = 1
 elif t == tnet.netshape[1]:
 t = np.nan
 ij = [target]
 stop = 1
 else:
 if len(ij) == lenij:
 t += 1
 step = 1
 elif steps_per_t == 'all':
 pass
 elif step < steps_per_t:
 step += 1
 else:
 t += 1
 step = 1
 if t == tnet.netshape[1]:
 t = np.nan
 ij = [target]
 stop = 1
 lenij = len(ij)
 # correct t for return
 # Only run if one pair is added.
 t += 1
 # part 2 starts here
 path = np.nan
 path_length = np.nan
 for n in itertools.product(*reversed(pairs)):
 a = np.array(n).flatten()
 if source not in a or target not in a:
 pass
 else:
 pathtmp = shortest_path_from_pairseq(a, source)
 if pathtmp:
 if not isinstance(path, list):
 path = pathtmp
 path_length = len(path)
 elif len(pathtmp) < path_length:
 path = pathtmp
 path_length = len(path)
 elif len(pathtmp) == path_length:
 if isinstance(path[0][0], list):
 if pathtmp in path:
 pass
 else:
 path.append(pathtmp)
 else:
 if path == pathtmp:
 pass
 else:
 path = [path, pathtmp]
 # elif sourcei < 2 and target in a[:2]:
 # path_length = 2
 paths.append([source, target, tstart, t-tstart, path_length, path])

 paths = pd.DataFrame(data=paths, columns=[
 'from', 'to', 't_start', 'temporal-distance', 'topological-distance', 'path includes'])
 return paths

 Source code for teneto.networkmeasures.sid

"""Claculates the segregation-integration difference."""

import teneto.utils as utils
import numpy as np
from .temporal_degree_centrality import temporal_degree_centrality

[docs]def sid(tnet, communities, axis=0, calc='overtime', decay=0):
 r"""
 Segregation integration difference (SID). An estimation of each community or global difference of within versus between community strength.[sid-1]_

 Parameters

 tnet: array, dict
 Temporal network input (graphlet or contact). Allowerd nettype: 'bu', 'bd', 'wu', 'wd'

 communities : array
 a Nx1 vector or NxT array of community assignment.

 axis : int
 Dimension that is returned 0 or 1 (default 0).
 Note, only relevant for directed networks.
 i.e. if 0, node i has Aijt summed over j and t.
 and if 1, node j has Aijt summed over i and t.

 calc : str
 'overtime' returns SID over time (a 1 x community vector) (default);

 'community_pairs' returns a community x community x time matrix, which is the SID for each community pairing;

 'community_avg' (returns a community x time matrix). Which is the normalized average of each community to all other communities.

 'community_pairs_norm' (returns a community x time matrix). Which is the normalized average of each community pair. Each pair is normalized to the average of both communities in the pair.

 decay: int
 if calc = 'community_pairs' or 'community_avg', then decay is possible where the centrality of
 the previous time point is carried over to the next time point but decays
 at a value of e^decay such that the temporal centrality measure becomes: $D(t+1) = e^{-decay}D(t) + D(t+1)$.

 Returns

 sid: array
 segregation-integration difference. Format: 2d or 3d numpy array (depending on calc) representing (community,community,time) or (community,time)

 Notes

 SID tries to quantify if there is more segergation or intgration compared to other time-points.
 If SID > 0, then there is more segregation than usual. If SID < 0, then there is more integration than usual.

 There are three different variants of SID, one is a global measure (calc='overtime'), the second is a value per community (calc='community_avg'),
 the third is a value for each community-community pairing (calc='community_pairs').

 First we calculate the temporal strength for each edge. This is calculate by

 .. math:: S_{i,t} = \sum_j G_{i,j,t}

 The pairwise SID, when the network is undirected, is calculated by

 .. math:: SID_{A,B,t} = ({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_B}}) S_{A,B,t})

 Where :math:`S_{A,t}` is the average temporal strength at time-point t for community A. :math:`N_A` is the number of nodes in community A.

 When calculating the SID for a community, it is calculated byL

 .. math:: SID_{A,t} = \sum_b^C({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_b}}) S_{A,b,t})

 Where C is the number of communities.

 When calculating the SID globally, it is calculated byL

 .. math:: SID_{t} = \sum_a^C\sum_b^C({2 \over {N_a (N_a - 1)}}) S_{A,t} - ({{1} \over {N_a * N_b}}) S_{a,b,t})

 References

 .. [sid-1]

 Fransson et al (2018) Brain network segregation and integration during an epoch-related working memory fMRI experiment.
 Neuroimage. 178. [`Link <https://www.sciencedirect.com/science/article/pii/S1053811918304476>`_]

 """
 tnet, netinfo = utils.process_input(tnet, ['C', 'G', 'TN'])
 D = temporal_degree_centrality(
 tnet, calc='pertime', communities=communities, decay=decay)

 # Check network output (order of communitiesworks)
 network_ids = np.unique(communities)
 communities_size = np.array([sum(communities == n) for n in network_ids])

 sid = np.zeros([network_ids.max()+1, network_ids.max()+1, tnet.shape[-1]])
 for n in network_ids:
 for m in network_ids:
 betweenmodulescaling = 1/(communities_size[n]*communities_size[m])
 if netinfo['nettype'][1] == 'd':
 withinmodulescaling = 1 / \
 (communities_size[n]*communities_size[n])
 withinmodulescaling_m = 1 / (communities_size[m]*communities_size[m])
 elif netinfo['nettype'][1] == 'u':
 withinmodulescaling = 2 / \
 (communities_size[n]*(communities_size[n]-1))
 withinmodulescaling_m = 2 / (communities_size[m]*(communities_size[m]-1))
 if n == m:
 betweenmodulescaling = withinmodulescaling
 if calc == 'community_pairs_norm':
 # Here normalize by avg of n and m
 sid[n, m, :] = ((withinmodulescaling * D[n, n, :]) + (withinmodulescaling_m * D[m, m, :])) / 2 - betweenmodulescaling * D[n, m, :]
 else:
 sid[n, m, :] = withinmodulescaling * \
 D[n, n, :] - betweenmodulescaling * D[n, m, :]
 # If nans emerge than there is no connection between networks at time point, so make these 0.
 sid[np.isnan(sid)] = 0

 if calc == 'communities_avg':
 return np.sum(sid, axis=axis)
 elif calc == 'overtime':
 return np.sum(np.sum(sid, axis=1), axis=0)
 else:
 return sid

 Source code for teneto.networkmeasures.temporal_betweenness_centrality

"""Calculates temporal betweenness centrality"""

import numpy as np
from .shortest_temporal_path import shortest_temporal_path

[docs]def temporal_betweenness_centrality(tnet=None, paths=None, calc='pertime'):
 r"""
 Returns temporal betweenness centrality per node.

 Parameters

 data : array or dict

 Temporal network input (graphlet or contact). nettype: 'bu', 'bd'.

 calc : str

 either 'overtime' or 'pertime'

 paths : pandas dataframe

 Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

 Note

 Input should be *either* tnet or paths.

 Returns

 :close: array

 normalized temporal betweenness centrality.

 If calc = 'pertime', returns (node,time)

 If calc = 'overtime', returns (node)

 Notes

 Temporal betweenness centrality uses the shortest temporal
 paths and calculates betweennesss from it.

 Teneto returns a normalized betweenness centrality value,
 defined as [Bet-1]_:

 .. math::

 B_{it} = {1 \over (N-1)(N-2)} \sum_{j = 1; j \neq i}
 \sum_{k = 1; k \neq i,j} {\sigma^i_{jkt} \over \sigma_{jk}}

 If there is a shortest temporal path from j to k, starting at t that
 goes through node i, then :math:`\sigma^i_{jkt}` is 1, otherwise 0.
 :math:`\sigma_{jk}` is the total number of paths that exist from j to k.
 The remaining part of the equation normalizes by the number of nodes.

 If a temporal network is used as input (i.e. not the paths), then teneto
 uses :py:func:`.shortest_temporal_path` to calculates the shortest paths.
 See :py:func:`.shortest_temporal_path` for more details.

 If ``calc=overtime`` then the average B over time is returned.

 References

 .. [Bet-1]

 Tang, J., Musolesi, M., Mascolo, C., Latora, V., & Nicosia, V. (2010).
 Analysing Information Flows and Key Mediators through Temporal Centrality
 Metrics Categories and Subject Descriptors.
 Proceedings of the 3rd Workshop on Social Network Systems.
 [`Link https://doi.org/10.1145/1852658.1852661`_]

 """
 if tnet is not None and paths is not None:
 raise ValueError('Only network or path input allowed.')
 if tnet is None and paths is None:
 raise ValueError('No input.')
 # if shortest paths are not calculated, calculate them
 if tnet is not None:
 paths = shortest_temporal_path(tnet)

 bet = np.zeros([paths[['from', 'to']].max().max() +
 1, paths['t_start'].max() + 1])

 for row in paths.iterrows():
 if (np.isnan(row[1]['path includes'])).all():
 pass
 else:
 nodes_in_path = np.unique(np.concatenate(
 row[1]['path includes'])).astype(int).tolist()
 nodes_in_path.remove(row[1]['from'])
 nodes_in_path.remove(row[1]['to'])
 sigmajk = paths[(paths['from'] == row[1]['from']) & (paths['to'] == row[1]['to'])]
 sigmajk = sigmajk.dropna(subset=['temporal-distance'])
 sigmajk = len(sigmajk)
 if len(nodes_in_path) > 0:
 bet[nodes_in_path, row[1]['t_start']] += 1 / sigmajk

 # Normalise bet
 bet = (1 / ((bet.shape[0] - 1) * (bet.shape[0] - 2))) * bet

 if calc == 'overtime':
 bet = np.mean(bet, axis=1)

 return bet

 Source code for teneto.networkmeasures.temporal_closeness_centrality

"""Calculates temporal closeness centrality"""

import numpy as np
from .shortest_temporal_path import shortest_temporal_path

[docs]def temporal_closeness_centrality(tnet=None, paths=None):
 r"""
 Returns temporal closeness centrality per node.

 Temporal closeness centrlaity is the sum of a node's
 average temporal paths with all other nodes.

 Parameters

 tnet : array, dict, object

 Temporal network input with nettype: 'bu', 'bd'.

 paths : pandas dataframe

 Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

 Note

 Only one input (tnet or paths) can be supplied to the function.

 Returns

 :close: array

 temporal closness centrality (nodal measure)

 Notes

 Temporal closeness centrality is defined in [Close-1]_:

 .. math:: C^T_{i} = {{1} \over {N-1}}\sum_j{1\over\\tau_{ij}}

 Where :math:`\\tau_{ij}` is the average temporal paths between node i and j.

 Note, there are multiple different types of temporal distance measures
 that can be used in temporal networks.
 If a temporal network is used as input (i.e. not the paths), then teneto
 uses :py:func:`.shortest_temporal_path` to calculates the shortest paths.
 See :py:func:`.shortest_temporal_path` for more details.

 .. [Close-1]

 Pan, R. K., & Saramäki, J. (2011).
 Path lengths, correlations, and centrality in temporal networks.
 Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(1).
 [`Link https://doi.org/10.1103/PhysRevE.84.016105`_]

 """
 if tnet is not None and paths is not None:
 raise ValueError('Only network or path input allowed.')
 if tnet is None and paths is None:
 raise ValueError('No input.')
 # if shortest paths are not calculated, calculate them
 if tnet is not None:
 paths = shortest_temporal_path(tnet)

 # Change for HDF5: paths.groupby([from,to])
 # Then put preallocated in a pathmat 2D array
 pathmat = np.zeros([paths[['from', 'to']].max().max() + 1,
 paths[['from', 'to']].max().max() + 1,
 paths[['t_start']].max().max() + 1]) * np.nan
 pathmat[paths['from'].values, paths['to'].values,
 paths['t_start'].values] = paths['temporal-distance']

 closeness = np.nansum(1 / np.nanmean(pathmat, axis=2),
 axis=1) / (pathmat.shape[1] - 1)

 return closeness

 Source code for teneto.networkmeasures.temporal_degree_centrality

"""Calculates temporal degree centrality"""

import numpy as np
from ..utils import process_input

[docs]def temporal_degree_centrality(tnet, axis=0, calc='overtime', communities=None,
 decay=0, ignorediagonal=True):
 r"""
 Temporal degree of network.

 The sum of all connections each node has through time
 (either per timepoint or over the entire temporal sequence).

 Parameters

 net : array, dict
 Temporal network input (graphlet or contact). Can have nettype: 'bu', 'bd', 'wu', 'wd'
 axis : int
 Dimension that is returned 0 or 1 (default 0).
 Note, only relevant for directed networks.
 i.e. if 0, node i has Aijt summed over j and t.
 and if 1, node j has Aijt summed over i and t.
 calc : str
 Can be following alternatives:

 'overtime' : returns a 1 x node vector. Returns the degree/stregnth over all time points.

 'pertime' : returns a node x time array. Returns the degree/strength per time point.

 'module_degree_zscore' : returns the Z-scored within community degree centrality
 (communities argument required). This is done for each time-point
 i.e. 'pertime' returns static degree centrality per time-point.
 ignorediagonal: bool
 if True, diagonal is made to 0.
 communities : array (Nx1)
 Vector of community assignment.
 If this is given and calc='pertime', then the strength within and
 between each communities is returned.
 (Note, this is not technically degree centrality).
 decay : int
 if calc = 'pertime', then decay is possible where the centrality of
 the previous time point is carried over to the next time point but decays
 at a value of e^decay such that $D_d(t+1) = e^{-decay}D_d(t) + D(t+1)$.
 If decay is 0 then the final D will equal D when calc='overtime',
 if decay = inf then this will equal calc='pertime'.

 Returns

 D : array
 temporal degree centrality (nodal measure).
 Array is 1D ('overtime'), 2D ('pertime', 'module_degree_zscore'),
 or 3D ('pertime' + communities (non-nodal/community measures)).

 Notes

 When the network is weighted, this could also be called "temporal strength"
 or "temporal strength centrality".
 This is a simple extension of the static definition.
 At times this has been defined slightly differently.
 Here we followed the definitions in [Degree-1]_ or [Degree-2]_.
 There are however many authors prior to this that have used temporal degree centrality.

 There are two basic versions of temporal degree centrality implemented:
 the average temporal degree centrality (``calc='overtime'``)
 and temporal degree centrality (``calc='pertime'``).

 When ``calc='pertime'``:

 .. math:: D_{it} = \sum_j A_{ijt}

 where A is the multi-layer connectivity matrix of the temporal network.

 This entails that :math:`D_{it}` is the sum of a node i's degree/strength at t.
 This has also been called the instantaneous degree centrality [Degree-2]_.

 When ``calc='overtime'``:

 .. math:: D_{i} = \sum_t\sum_j A_{ijt}

 i.e. :math:`D_{i}` is the sum of a node i's degree/strength over all time points.

 There are some additional options which can modify the estimate.
 One way is to add a decay term.
 This entails that ..math::`D_{it}`, uses some of the previous time-points estimate.
 An exponential decay is used here.

 .. math:: D_{it} = e^{-b} D_{i(t-1)} + \sum_j A_{ijt}

 where b is the deay parameter specified in the function.
 This, to my knowledge, was first introdueced by [Degree-2]_.

 References

 .. [Degree-1]

 Thompson, et al (2017). From static to temporal network theory:
 Applications to functional brain connectivity.
 Network Neuroscience, 1(2), 69-99.
 [`Link <https://www.mitpressjournals.org/doi/full/10.1162/netn_a_00011>`_]

 .. [Degree-2]

 Masuda, N., & Lambiotte, R. (2016). A Guidance to Temporal Networks.
 [`Link to book's publisher
 <https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001>`_]

 """
 # Get input in right format
 tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN')
 if axis == 1:
 fromax = 'j'
 toax = 'i'
 else:
 fromax = 'i'
 toax = 'j'
 if tnet.sparse and tnet.nettype[0] == 'b':
 tnet.network['weight'] = 1
 # Diagonal is currently deleted.
 # if ignorediagonal:
 # tnet = set_diagonal(tnet, 0)
 # sum sum tnet
 if calc == 'pertime' and communities is None:
 # Return node,time
 if tnet.sparse:
 tdeg = np.zeros([tnet.netshape[0], tnet.netshape[1]])
 df = tnet.network.groupby([fromax, 't']).sum().reset_index()
 tdeg[df[fromax], df['t']] = df['weight']
 # If undirected, do reverse
 if tnet.nettype[1] == 'u':
 df = tnet.network.groupby([toax, 't']).sum().reset_index()
 tdeg[df[toax], df['t']] += df['weight']
 else:
 tdeg = np.sum(tnet.network, axis=axis)
 elif calc == 'module_degree_zscore' and communities is None:
 raise ValueError(
 'Communities must be specified when calculating module degree z-score.')
 elif calc != 'pertime' and communities is None:
 # Return node
 if tnet.sparse:
 tdeg = np.zeros([tnet.netshape[0]])
 # Strength if weighted
 df = tnet.network.groupby([fromax])['weight'].sum().reset_index()
 tdeg[df[fromax]] += df['weight']
 # If undirected, do reverse
 if tnet.nettype[1] == 'u':
 df = tnet.network.groupby([toax])['weight'].sum().reset_index()
 tdeg[df[toax]] += df['weight']
 else:
 tdeg = np.sum(np.sum(tnet.network, axis=-1), axis=axis)
 elif calc == 'module_degree_zscore' and communities is not None:
 tdeg = np.zeros([tnet.netshape[0], tnet.netshape[1]])
 # Need to make this fully sparse
 if tnet.sparse:
 network = tnet.df_to_array()
 else:
 network = tnet.network
 for t in range(tnet.netshape[1]):
 if len(communities.shape) == 2:
 coms = communities[:, t]
 else:
 coms = communities
 for c in np.unique(coms):
 k_i = np.sum(network[
 :, coms == c, t][coms == c], axis=axis)
 tdeg[coms == c, t] = (k_i - np.mean(k_i)) / np.std(k_i)
 tdeg[np.isnan(tdeg) == 1] = 0
 elif calc == 'pertime' and communities is not None:
 # neet to make this fully sparse
 if tnet.sparse:
 network = tnet.df_to_array()
 else:
 network = tnet.network
 tdeg_communities = np.zeros(
 [communities.max() + 1, communities.max() + 1, communities.shape[-1]])
 if len(communities.shape) == 2:
 for t in range(len(communities[-1])):
 coms = communities[:, t]
 unique_communities = np.unique(coms)
 for s1 in unique_communities:
 for s2 in unique_communities:
 tdeg_communities[s1, s2, t] = np.sum(
 np.sum(network[coms == s1, :, t][:, coms == s2], axis=1), axis=0)
 else:
 unique_communities = np.unique(communities)
 tdeg_communities = [np.sum(np.sum(network[communities == s1][:, communities == s2],
 axis=1), axis=0)
 for s1 in unique_communities for s2 in unique_communities]

 tdeg = np.array(tdeg_communities)
 tdeg = np.reshape(tdeg, [len(np.unique(communities)), len(
 np.unique(communities)), tnet.netshape[-1]])
 # Divide diagonal by 2 if undirected to correct for edges being present twice
 if tnet.nettype[1] == 'u':
 for s in range(tdeg.shape[0]):
 tdeg[s, s, :] = tdeg[s, s, :] / 2
 else:
 raise ValueError("invalid calc argument")

 if decay > 0 and calc == 'pertime':
 # Reshape so that time is first dimensions
 tdeg = tdeg.transpose(
 np.hstack([len(tdeg.shape) - 1, np.arange(len(tdeg.shape) - 1)]))
 for n in range(1, tdeg.shape[0]):
 tdeg[n] = np.exp(0 - decay) * tdeg[n - 1] + tdeg[n]
 tdeg = tdeg.transpose(np.hstack([np.arange(1, len(tdeg.shape)), 0]))
 elif decay > 0:
 print('WARNING: decay cannot be applied unless calc=time, ignoring decay')

 return tdeg

 Source code for teneto.networkmeasures.temporal_efficiency

"""Calculates Temporal Efficiency
"""

import numpy as np
from .shortest_temporal_path import shortest_temporal_path

[docs]def temporal_efficiency(tnet=None, paths=None, calc='overtime'):
 r"""
 Returns temporal efficiency estimate. BU networks only.

 Parameters

 Input should be *either* tnet or paths.

 data : array or dict

 Temporal network input (graphlet or contact). nettype: 'bu', 'bd'.

 paths : pandas dataframe

 Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

 calc : str
 Options: 'overtime' (default) - measure averages over time and nodes;
 'node' or 'node_from' average over nodes (i) and time. Giving average efficiency for i to j;
 'node_to' measure average over nodes j and time;
 Giving average efficiency using paths to j from i;

 Returns

 E : array
 Global temporal efficiency

 """
 if tnet is not None and paths is not None:
 raise ValueError('Only network or path input allowed.')
 if tnet is None and paths is None:
 raise ValueError('No input.')
 # if shortest paths are not calculated, calculate them
 if tnet is not None:
 paths = shortest_temporal_path(tnet)

 pathmat = np.zeros([paths[['from', 'to']].max().max(
)+1, paths[['from', 'to']].max().max()+1, paths[['t_start']].max().max()+1]) * np.nan
 pathmat[paths['from'].values, paths['to'].values,
 paths['t_start'].values] = paths['temporal-distance']

 # Calculate efficiency which is 1 over the mean path.
 if calc == 'overtime':
 eff = 1 / np.nanmean(pathmat)
 elif calc == 'node' or calc == 'node_from':
 eff = 1 / np.nanmean(np.nanmean(pathmat, axis=2), axis=1)
 elif calc == 'node_to':
 eff = 1 / np.nanmean(np.nanmean(pathmat, axis=2), axis=0)

 return eff

 Source code for teneto.networkmeasures.temporal_participation_coeff

import numpy as np
#from ..utils import process_input
from teneto.utils import process_input
import pandas as pd

[docs]def temporal_participation_coeff(tnet, communities=None, decay=None, removeneg=False):
 r"""
 Calculates the temporal participation coefficient

 Temporal participation coefficient is a measure of diversity of connections across communities for individual nodes.

 Parameters

 tnet : array, dict
 graphlet or contact sequence input. Only positive matrices considered.
 communities : array
 community vector. Either 1D (node) community index or 2D (node,time).
 removeneg : bool (default false)
 If true, all values < 0 are made to be 0.

 Returns

 P : array
 participation coefficient

 Notes

 Static participatoin coefficient is:

 .. math:: P_i = 1 - \sum_s^{N_M}({{k_{is}}\over{k_i}})^2

 Where s is the index of each community (:math:`N_M`).
 :math:`k_i` is total degree of node.
 And :math:`k_{is}` is degree of connections within community.[part-1]_

 This "temporal" version only loops through temporal snapshots and calculates :math:`P_i` for each t.

 If directed, function sums axis=1,
 so tnet may need to be transposed before hand depending on what type of directed part_coef you are interested in.

 References

 .. [part-1]

 Guimera et al (2005) Functional cartography of complex metabolic networks.
 Nature. 433: 7028, p895-900. [`Link <http://doi.org/10.1038/nature03288>`_]
 """
 if communities is None:
 if isinstance(tnet, dict):
 if 'communities' in tnet.keys():
 communities = tnet['communities']
 else:
 raise ValueError('Community index not found')
 else:
 raise ValueError('Community must be provided for graphlet input')

 # Get input in right format
 tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN')

 if tnet.nettype[0] == 'w':
 # TODO add contingency when hdf5 data has negative edges
 if not tnet.hdf5 and tnet.sparse:
 if sum(tnet.network['weight'] < 0) > 0 and not removeneg:
 print(
 'TENETO WARNING: negative edges exist when calculating participation coefficient.')
 else:
 tnet.network['weight'][tnet.network['weight'] < 0] = 0
 if not tnet.hdf5 and not tnet.sparse:
 if np.sum(tnet.network< 0) > 0 and not removeneg:
 print(
 'TENETO WARNING: negative edges exist when calculating participation coefficient.')
 else:
 tnet.network[tnet.network < 0] = 0

 part = np.zeros([tnet.netshape[0], tnet.netshape[1]])

 if len(communities.shape) == 1:
 for t in np.arange(0, tnet.netshape[1]):
 C = communities
 snapshot = tnet.get_network_when(t=t)
 if tnet.nettype[1] == 'd':
 i_at_t = snapshot['i'].values
 else:
 i_at_t = np.concatenate(
 [snapshot['i'].values, snapshot['j'].values])
 i_at_t = np.unique(i_at_t).tolist()
 i_at_t = list(map(int, i_at_t))
 for i in i_at_t:
 # Calculate degree of node
 if tnet.nettype[1] == 'd':
 df = tnet.get_network_when(i=i, t=t)
 j_at_t = df['j'].values
 if tnet.nettype == 'wd':
 k_i = df['weight'].sum()
 elif tnet.nettype == 'bd':
 k_i = len(df)
 elif tnet.nettype[1] == 'u':
 df = tnet.get_network_when(ij=i, t=t)
 j_at_t = np.concatenate([df['i'].values, df['j'].values])
 if tnet.nettype == 'wu':
 k_i = df['weight'].sum()
 elif tnet.nettype == 'bu':
 k_i = len(df)
 j_at_t = list(map(int, j_at_t))
 for c in np.unique(C[j_at_t]):
 ci = np.where(C == c)[0].tolist()
 k_is = tnet.get_network_when(i=i, j=ci, t=t)
 if tnet.nettype[1] == 'u' and tnet.sparse:
 k_is2 = tnet.get_network_when(j=i, i=ci, t=t)
 k_is = pd.concat([k_is, k_is2])
 if len(k_is) > 0:
 if tnet.nettype[0] == 'b':
 k_is = len(k_is)
 else:
 k_is = k_is['weight'].sum()
 part[i, t] += np.square(k_is/k_i)
 part[i_at_t, t] = 1 - part[i_at_t, t]
 print(part)
 if decay is not None and t > 0:
 part[i_at_t, t] += decay*part[i_at_t, t-1]
 else:
 for t in np.arange(0, tnet.netshape[1]):
 snapshot = tnet.get_network_when(t=t)
 if tnet.nettype[1] == 'd':
 i_at_t = snapshot['i'].values
 else:
 i_at_t = np.concatenate(
 [snapshot['i'].values, snapshot['j'].values])
 i_at_t = np.unique(i_at_t).tolist()
 i_at_t = list(map(int, i_at_t))
 for i in i_at_t:
 for tc in np.arange(0, tnet.netshape[1]):
 C = communities[:, tc]
 # Calculate degree of node
 if tnet.nettype[1] == 'd':
 df = tnet.get_network_when(i=i, t=t)
 j_at_t = df['j'].values
 if tnet.nettype[0] == 'w':
 k_i = df['weight'].sum()
 elif tnet.nettype[0] == 'b':
 k_i = len(df)
 elif tnet.nettype[1] == 'u':
 df = tnet.get_network_when(ij=i, t=t)
 j_at_t = np.concatenate(
 [df['i'].values, df['j'].values])
 if tnet.nettype == 'wu':
 k_i = df['weight'].sum()
 elif tnet.nettype == 'bu':
 k_i = len(df)
 j_at_t = list(map(int, j_at_t))

 for c in np.unique(C[j_at_t]):
 ci = np.where(C == c)[0].tolist()
 k_is = tnet.get_network_when(i=i, j=ci, t=t)
 if tnet.nettype[1] == 'u' and tnet.sparse:
 k_is2 = tnet.get_network_when(j=i, i=ci, t=t)
 k_is = pd.concat([k_is, k_is2])
 if tnet.nettype[0] == 'b':
 k_is = len(k_is)
 else:
 k_is = k_is['weight'].sum()
 part[i, t] += np.square(k_is/k_i)
 part[i, t] = part[i, t] / tnet.netshape[1]
 part[i_at_t, t] = 1 - part[i_at_t, t]
 if decay is not None and t > 0:
 part[i_at_t, t] += decay*part[i_at_t, t-1]

 # Set any division by 0 to 0
 part[np.isnan(part) == 1] = 0

 return part

 Source code for teneto.networkmeasures.topological_overlap

"""Calculates topological overlap"""
import numpy as np
from ..utils import process_input

[docs]def topological_overlap(tnet, calc='pertime'):
 u"""
 Topological overlap quantifies the persistency of edges through time.

 If two consequtive time-points have similar edges, this becomes high (max 1).
 If there is high change, this becomes 0.

 References: [topo-1]_, [topo-2]_

 Parameters

 tnet : array, dict
 graphlet or contact sequence input. Nettype: 'bu'.
 calc: str
 which version of topological overlap to calculate:
 'node' - calculates for each node, averaging over time.
 'pertime' - (default) calculates for each node per time points.
 'overtime' - calculates for each node per time points.

 Returns

 topo_overlap : array
 if calc = 'pertime', array is (node,time) in size.
 if calc = 'node', array is (node) in size.
 if calc = 'overtime', array is (1) in size. The final time point returns as nan.

 Notes

 When edges persist over time, the topological overlap increases.
 It can be calculated as a global valu, per node, per node-time.

 When calc='pertime', then the topological overlap is:

 .. math::

 TopoOverlap_{i,t} = {\sum_j G_{i,j,t} G_{i,j,t+1}
 \over \sqrt{\sum_j G_{i,j,t} \sum_j G_{i,j,t+1}}}

 When calc='node', then the topological overlap is the mean of math:`TopoOverlap_{i,t}`:

 .. math:: AvgTopoOverlap_{i} = {1 \over T-1} \sum_t TopoOverlap_{i,t}

 where T is the number of time-points.
 This is called the *average topological overlap*.

 When calc='overtime', the *temporal-correlation coefficient* is calculated

 .. math:: TempCorrCoeff = {1 \over N} \sum_i AvgTopoOverlap_i

 where N is the number of nodes.

 For all the three measures above, the value is between 0 and 1 where 0
 entails "all edges changes" and 1 entails "no edges change".

 Examples

 First import all necessary packages

 >>> import teneto
 >>> import numpy as np

 Then make an temporal network with 3 nodes and 4 time-points.

 >>> G = np.zeros([3, 3, 3])
 >>> i_ind = np.array([0, 0, 0, 0,])
 >>> j_ind = np.array([1, 1, 1, 2,])
 >>> t_ind = np.array([0, 1, 2, 2,])
 >>> G[i_ind, j_ind, t_ind] = 1
 >>> G = G + G.transpose([1,0,2]) # Make symmetric

 Now the topological overlap can be calculated:

 >>> topo_overlap = teneto.networkmeasures.topological_overlap(G)

 This returns *topo_overlap* which is a (node,time) array.
 Looking above at how we defined G,
 when t = 0, there is only the edge (0,1).
 When t = 1, this edge still remains.
 This means topo_overlap should equal 1 for node 0 at t=0 and 0 for node 2:

 >>> topo_overlap[0,0]
 1.0
 >>> topo_overlap[2,0]
 0.0

 At t=2, there is now also an edge between (0,2),
 this means node 0's topological overlap at t=1 decreases as
 its edges have decreased in their persistency at the next time point
 (i.e. some change has occured). It equals ca. 0.71

 >>> topo_overlap[0,1]
 0.7071067811865475

 If we want the average topological overlap, we simply add the calc argument to be 'node'.

 >>> avg_topo_overlap = teneto.networkmeasures.topological_overlap(G, calc='node')

 Now this is an array with a length of 3 (one per node).

 >>> avg_topo_overlap
 array([0.85355339, 1. , 0.])

 Here we see that node 1 had all its connections persist, node 2 had no connections persisting, and node 0 was in between.

 To calculate the temporal correlation coefficient,

 >>> temp_corr_coeff = teneto.networkmeasures.topological_overlap(G, calc='overtime')

 This produces one value reflecting all of G

 >>> temp_corr_coeff
 0.617851130197758

 References

 .. [topo-1]

 Tang et al (2010) Small-world behavior in time-varying graphs.
 Phys. Rev. E 81, 055101(R) [`arxiv link <https://arxiv.org/pdf/0909.1712.pdf>`_]
 .. [topo-2]

 Nicosia et al (2013) "Graph Metrics for Temporal Networks"
 In: Holme P., Saramäki J. (eds) Temporal Networks.
 Understanding Complex Systems. Springer.
 [`arxiv link <https://arxiv.org/pdf/1306.0493.pdf>`_]

 """
 tnet = process_input(tnet, ['C', 'G', 'TN'])[0]

 numerator = np.sum(tnet[:, :, :-1] * tnet[:, :, 1:], axis=1)
 denominator = np.sqrt(
 np.sum(tnet[:, :, :-1], axis=1) * np.sum(tnet[:, :, 1:], axis=1))

 topo_overlap = numerator / denominator
 topo_overlap[np.isnan(topo_overlap)] = 0

 if calc == 'pertime':
 # Add missing timepoint as nan to end of time series
 topo_overlap = np.hstack(
 [topo_overlap, np.zeros([topo_overlap.shape[0], 1])*np.nan])
 else:
 topo_overlap = np.mean(topo_overlap, axis=1)
 if calc == 'node':
 pass
 elif calc == 'overtime':
 topo_overlap = np.mean(topo_overlap)

 return topo_overlap

 Source code for teneto.networkmeasures.volatility

"""
Function to calculate volatility
"""
import numpy as np
from ..utils import process_input,\
 check_distance_funciton_input,\
 get_distance_function

[docs]def volatility(tnet, distance_func='default', calc='overtime', communities=None, event_displacement=None):
 r"""
 Volatility of temporal networks.

 Volatility is the average distance between consecutive time points
 (difference is caclualted either globally or per edge).

 Parameters

 tnet : array or dict
 temporal network input (graphlet or contact). Nettype: 'bu','bd','wu','wd'

 D : str
 Distance function. Following options available: 'default', 'hamming', 'euclidean'.
 (Default implies hamming for binary networks, euclidean for weighted).

 calc : str
 Version of volaitility to caclulate. Possibilities include:
 'overtime' - (default): the average distance of all nodes for each consecutive time point).
 'edge' - average distance between consecutive time points for each edge).
 Takes considerably longer
 'node' - (i.e. returns the average per node output when calculating volatility per 'edge').
 'pertime' - returns volatility per time point
 'communities' - returns volatility per communitieswork id (see communities).
 Also is returned per time-point and this may be changed in the future
 (additional options are then required)
 'event_displacement' - calculates the volatility from a specified point.
 Returns time-series.

 communities : array
 Array of indicies for community (eiter (node) or (node,time) dimensions).

 event_displacement : int
 if calc = event_displacement specify the temporal index.
 All other time-points are calculated in relation to this time point.

 Notes

 Volatility calculates the difference between network snapshots.

 .. math:: V_t = D(G_t,G_{t+1})

 Where D is some distance function (e.g. Hamming distance for binary matrices).

 V can be calculated for the entire network (global),
 but can also be calculated for individual edges, nodes or given a community vector.

 Index of communities are returned "as is" with a shape of:
 (max(communities)+1, max(communities)+1).
 So if the indexes used are [1,2,3,5], V.shape==(6,6).
 The returning V[1,2] will correspond indexes 1 and 2.
 And missing index (e.g. here 0 and 4 will be NANs in rows and columns).
 If this behaviour is unwanted, call clean_communitiesdexes first.

 Examples

 Import everything needed.

 >>> import teneto
 >>> import numpy
 >>> np.random.seed(1)
 >>> tnet = teneto.TemporalNetwork(nettype='bu')

 Here we generate a binary network where edges have a 0.5 change of going "on", and once on a 0.2 change to go "off"

 >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2))

 Calculate the volatility

 >>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
 0.5555555555555556

 If we change the probabilities to instead be certain edges disapeared the time-point after the appeared:

 >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1))

 This will make a more volatile network

 >>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
 0.1111111111111111

 We can calculate the volatility per time instead

 >>> vol_time = tnet.calc_networkmeasure('volatility', calc='pertime', distance_func='hamming')
 >>> len(vol_time)
 9
 >>> vol_time[0]
 0.3333333333333333

 Or per node:

 >>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func='hamming')
 >>> vol_node
 array([0.07407407, 0.07407407, 0.07407407])

 Here we see the volatility for each node was the same.

 It is also possible to pass a community vector.
 The function will return volatility both within and between each community.
 So the following has two communities:

 >>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func='hamming')
 >>> vol_com.shape
 (2, 2, 9)
 >>> vol_com[:,:,0]
 array([[nan, 0.5],
 [0.5, 0.]])

 And we see that, at time-point 0, there is some volatility between community 0 and 1.
 Further, there is no volatility within community 1.
 The reason for nan appearing is due to there only being 1 node in community 0.

 Output

 vol : array

 """
 # Get input (C or G)
 tnet, netinfo = process_input(tnet, ['C', 'G', 'TN'])

 distance_func = check_distance_funciton_input(
 distance_func, netinfo)

 if not isinstance(distance_func, str):
 raise ValueError('Distance metric must be a string')

 # If not directional, only calc on the uppertriangle
 if netinfo['nettype'][1] == 'd':
 ind = np.triu_indices(tnet.shape[0], k=-tnet.shape[0])
 elif netinfo['nettype'][1] == 'u':
 ind = np.triu_indices(tnet.shape[0], k=1)

 if calc == 'communities':
 # Make sure communities is np array for indexing later on.
 communities = np.array(communities)
 if len(communities) != netinfo['netshape'][0]:
 raise ValueError(
 'When processing per network, communities vector must equal the number of nodes')
 if communities.min() < 0:
 raise ValueError(
 'Communitiy assignments must be positive integers')

 # Get chosen distance metric fucntion
 distance_func = get_distance_function(distance_func)

 if calc == 'overtime':
 vol = np.mean([distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1])
 for t in range(0, tnet.shape[-1] - 1)])
 elif calc == 'pertime':
 vol = [distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1])
 for t in range(0, tnet.shape[-1] - 1)]
 elif calc == 'event_displacement':
 vol = [distance_func(tnet[ind[0], ind[1], event_displacement],
 tnet[ind[0], ind[1], t]) for t in range(0, tnet.shape[-1])]
 # This takes quite a bit of time to loop through. When calculating per edge/node.
 elif calc == 'edge' or calc == 'node':
 vol = np.zeros([tnet.shape[0], tnet.shape[1]])
 for i in ind[0]:
 for j in ind[1]:
 vol[i, j] = np.mean([distance_func(
 tnet[i, j, t], tnet[i, j, t + 1]) for t in range(0, tnet.shape[-1] - 1)])
 if netinfo['nettype'][1] == 'u':
 vol = vol + np.transpose(vol)
 if calc == 'node':
 vol = np.mean(vol, axis=1)
 elif calc == 'communities':
 net_id = set(communities)
 vol = np.zeros([max(net_id) + 1, max(net_id) +
 1, netinfo['netshape'][-1] - 1])
 for net1 in net_id:
 for net2 in net_id:
 if net1 != net2:
 for tind in range(0, tnet.shape[-1] - 1):
 com1 = tnet[communities == net1][:, communities == net2, tind].flatten()
 com2 = tnet[communities == net1][:, communities == net2, tind + 1].flatten()
 vol[net1, net2, tind] = distance_func(com1, com2)
 else:
 nettmp = tnet[communities == net1][:, communities == net2, :]
 triu = np.triu_indices(nettmp.shape[0], k=1)
 nettmp = nettmp[triu[0], triu[1], :]
 vol[net1, net2, :] = [distance_func(nettmp[:, t].flatten(
), nettmp[:, t + 1].flatten()) for t in range(0, tnet.shape[-1] - 1)]

 elif calc == 'withincommunities':
 withi = np.array([[ind[0][n], ind[1][n]] for n in range(
 0, len(ind[0])) if communities[ind[0][n]] == communities[ind[1][n]]])
 vol = [distance_func(tnet[withi[:, 0], withi[:, 1], t], tnet[withi[:, 0],
 withi[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)]
 elif calc == 'betweencommunities':
 beti = np.array([[ind[0][n], ind[1][n]] for n in range(
 0, len(ind[0])) if communities[ind[0][n]] != communities[ind[1][n]]])
 vol = [distance_func(tnet[beti[:, 0], beti[:, 1], t], tnet[beti[:, 0],
 beti[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)]

 return vol

 Source code for teneto.plot.circle_plot

"""Function to draw a circle_plot"""
import numpy as np
import math
from .slice_plot import make_bezier
from ..utils import check_input, graphlet2contact
import matplotlib.cm as cm

[docs]def circle_plot(netIn, ax, nodelabels=None, linestyle='k-', nodesize=1000, cmap='Set2'):
 r"""

 Function draws "circle plot" and exports axis handles

 Parameters

 netIn : temporal network input (graphlet or contact)
 ax : matplotlib ax handles.
 nodelabels : list
 nodes labels. List of strings
 linestyle : str
 line style
 nodesize : int
 size of nodes
 cmap : str
 matplotlib colormap

 Returns

 ax : axis handle

 Example

 >>> import teneto
 >>> import numpy
 >>> import matplotlib.pyplot as plt
 >>> G = np.zeros([6, 6])
 >>> i = [0, 0, 0, 1, 2, 3, 4]
 >>> j = [3, 4, 5, 5, 4, 5, 5]
 >>> G[i, j] = 1
 >>> fig, ax = plt.subplots(1)
 >>> ax = teneto.plot.circle_plot(G, ax)
 >>> fig.show()

 .. plot::

 import teneto
 import numpy
 import matplotlib.pyplot as plt
 G = np.zeros([6, 6])
 i = [0, 0, 0, 1, 2, 3, 4]
 j = [3, 4, 5, 5, 4, 5, 5]
 G[i, j] = 1
 fig, ax = plt.subplots(1)
 teneto.plot.circle_plot(G, ax)
 fig.show()

 """
 # Get input type (C or G)
 inputType = check_input(netIn, conmat=1)
 if nodelabels is None:
 nodelabels = []
 # Convert C representation to G
 if inputType == 'M':
 shape = np.shape(netIn)
 edg = np.where(np.abs(netIn) > 0)
 contacts = [tuple([edg[0][i], edg[1][i]])
 for i in range(0, len(edg[0]))]
 netIn = {}
 netIn['contacts'] = contacts
 netIn['netshape'] = shape
 elif inputType == 'G':
 netIn = graphlet2contact(netIn)
 inputType = 'C'

 if inputType == 'C':
 edgeList = [tuple(np.array(e[0:2]) + e[2] * netIn['netshape'][0])
 for e in netIn['contacts']]
 elif inputType == 'M':
 edgeList = netIn['contacts']

 n = netIn['netshape'][0]
 # Get positions of node on unit circle
 posx = [math.cos((2 * math.pi * i) / n) for i in range(0, n)]
 posy = [math.sin((2 * math.pi * i) / n) for i in range(0, n)]
 # Get Bezier lines in a circle
 cmap = cm.get_cmap(cmap)(np.linspace(0, 1, n))
 for edge in edgeList:
 bvx, bvy = bezier_circle(
 (posx[edge[0]], posy[edge[0]]), (posx[edge[1]], posy[edge[1]]), 20)
 ax.plot(bvx, bvy, linestyle, zorder=0)
 for i in range(n):
 ax.scatter(posx[i], posy[i], s=nodesize, c=cmap[i], zorder=1)
 # Remove things that make plot unpretty
 ax.set_yticklabels([])
 ax.set_xticklabels([])
 ax.set_yticks([])
 ax.set_xticks([])
 ax.set_frame_on(False)
 # make plot a square
 x0, x1 = ax.get_xlim()
 y0, y1 = ax.get_ylim()
 ax.set_aspect((x1 - x0) / (y1 - y0))
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.spines['left'].set_visible(False)
 ax.spines['bottom'].set_visible(False)
 return ax

Adapaption of bezier_points but for going in towards the centre of circle
def bezier_circle(p1, p2, pointN):
 ts = [t / pointN for t in range(pointN + 1)]
d=p1[0]-(max(p1[1],p2[1])-min(p1[1],p2[1]))/negxLim
 bezier = make_bezier([p1, (0, 0), p2])
 points = bezier(ts)
 bvx = [i[0] for i in points]
 bvy = [i[1] for i in points]
 return bvx, bvy

 Source code for teneto.plot.graphlet_stack_plot

"""Plots graphlet stack plot"""
import matplotlib.pyplot as plt
import numpy as np
from scipy import ndimage
from ..utils import contact2graphlet, check_input

plt.rcParams['axes.facecolor'] = 'white'

[docs]def graphlet_stack_plot(netin, ax, q=10, cmap='Reds', gridcolor='k',
 borderwidth=2, bordercolor=None, Fs=1, timeunit='', t0=1,
 sharpen='yes', vminmax='minmax'):
 r"""
 Returns matplotlib axis handle for graphlet_stack_plot. This is a row of transformed connectivity matrices to look like a 3D stack.

 Parameters

 netin : array, dict
 network input (graphlet or contact)
 ax : matplotlib ax handles.
 q : int
 Quality. Increaseing this will lead to smoother axis but take up more memory.
 cmap : str
 Colormap (matplotlib) of graphlets
 Fs : int
 Sampling rate. Same as contact-representation (if netin is contact,
 and input is unset, contact dictionary is used)
 timeunit : str
 Unit of time for xlabel. Same as contact-representation (if netin is contact,
 and input is unset, contact dictionary is used)
 t0 : int
 What should the first time point be called. Should be integer. Default 1.
 gridcolor : str
 The color of the grid section of the graphlets. Set to 'none' if not wanted.
 borderwidth : int
 Scales the size of border.
 bordorcolor :
 color of the border (at the moment it must be in RGB values between 0 and 1
 -> this will be changed sometime in the future). Default: black.
 vminmax : str
 'maxabs', 'minmax' (default), or list/array with length of 2.
 Specifies the min and max colormap value of graphlets.
 Maxabs entails [-max(abs(G)),max(abs(G))], minmax entails [min(G), max(G)].

 Returns

 ax : matplotlib ax handle

 Note

 This function can require a lot of RAM with larger networks.

 Note

 At the momenet bordercolor cannot be set to zero. To remove border, set bordorwidth=1 and bordercolor=[1,1,1] for temporay workaround.

 Examples

 Create a network with some metadata

 >>> import numpy as np
 >>> import teneto
 >>> import matplotlib.pyplot as plt
 >>> np.random.seed(2017) # For reproduceability
 >>> N = 5 # Number of nodes
 >>> T = 10 # Number of timepoints
 >>> # Probability of edge activation
 >>> birth_rate = 0.2
 >>> death_rate = .9
 >>> # Add node names into the network and say time units are years, go 1 year per
 graphlet and startyear is 2007
 >>> cfg={}
 >>> cfg['Fs'] = 1
 >>> cfg['timeunit'] = 'Years'
 >>> cfg['t0'] = 2007 #First year in network
 >>> #Generate network
 >>> C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg)

 Now this network can be plotted

 >>> fig,ax = plt.subplots(figsize=(10,3))
 >>> ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap='Greys')
 >>> fig.show()

 .. plot::

 import numpy as np
 import teneto
 import matplotlib.pyplot as plt
 np.random.seed(2017) # For reproduceability
 N = 5 # Number of nodes
 T = 10 # Number of timepoints
 # Probability of edge activation
 birth_rate = 0.2
 death_rate = .9
 # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007
 cfg={}
 cfg['Fs'] = 1
 cfg['timeunit'] = 'Years'
 cfg['t0'] = 2007 #First year in network
 #Generate network
 C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg)
 fig,ax = plt.subplots(figsize=(10,3))
 cmap = 'Greys'
 ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap=cmap)
 fig.show()

 """
 # Get input type (C, G, TO)
 inputType = check_input(netin)

 # Convert TO to C representation
 if inputType == 'TO':
 netin = netin.contact
 inputType = 'C'
 # Convert C representation to G
 if inputType == 'C':
 if timeunit == '':
 timeunit = netin['timeunit']
 if t0 == 1:
 t0 = netin['t0']
 if Fs == 1:
 Fs = netin['Fs']
 netin = contact2graphlet(netin)

 if timeunit != '':
 timeunit = ' (' + timeunit + ')'

 if bordercolor is None:
 bordercolor = [0, 0, 0]

 if not isinstance(borderwidth, int):
 borderwidth = int(borderwidth)
 print('Warning: borderwidth should be an integer. Converting to integer.')

 # x and y ranges for each of the graphlet plots
 v = np.arange(0, netin.shape[0] + 1)
 vr = np.arange(netin.shape[0], -1, -1)
 # Preallocatie matrix

 if vminmax == '' or vminmax == 'absmax' or vminmax == 'maxabs':
 vminmax = [-np.nanmax(np.abs(netin)), np.nanmax(np.abs(netin))]
 elif vminmax == 'minmax':
 vminmax = [np.nanmin(netin), np.nanmax(netin)]

 if borderwidth == 0:
 addon = 1
 lw = 0
 else:
 addon = 0
 lw = q * 2
 qb = q * borderwidth + addon
 figmat = np.zeros([80 * q + (qb * 2), int(((netin.shape[-1]) *
 (80 * q) + (qb * 2)) - ((netin.shape[-1] - 1) * q * 80) / 2), 4])
 for n in range(0, netin.shape[-1]):
 # Create graphlet
 figtmp, axtmp = plt.subplots(
 1, facecolor='white', figsize=(q, q), dpi=80)
 axtmp.pcolormesh(v, vr, netin[:, :, n], cmap=cmap, edgecolor=gridcolor,
 linewidth=lw, vmin=vminmax[0], vmax=vminmax[1])
 axtmp.set_xticklabels('')
 axtmp.set_yticklabels('')
 axtmp.set_xticks([])
 axtmp.set_yticks([])
 x0, x1 = axtmp.get_xlim()
 y0, y1 = axtmp.get_ylim()
 axtmp.set_aspect((x1 - x0) / (y1 - y0))
 axtmp.spines['left'].set_visible(False)
 axtmp.spines['right'].set_visible(False)
 axtmp.spines['top'].set_visible(False)
 axtmp.spines['bottom'].set_visible(False)
 plt.subplots_adjust(left=0, bottom=0, right=1,
 top=1, wspace=0, hspace=0)

 # Convert graphlet to RGB values
 figtmp.canvas.draw()
 figmattmp = np.fromstring(
 figtmp.canvas.tostring_rgb(), dtype=np.uint8, sep='')
 figmattmp = figmattmp.reshape(
 figtmp.canvas.get_width_height()[::-1] + (3,))

 # Close figure for memory
 plt.close(figtmp)

 # Manually add a border

 figmattmp_withborder = np.zeros(
 [figmattmp.shape[0] + (qb * 2), figmattmp.shape[1] + (qb * 2), 3]) + (np.array(bordercolor) * 255)
 figmattmp_withborder[qb:-qb, qb:-qb, :] = figmattmp

 # Make corners rounded. First make a circle and then take the relevant quarter for each corner.
 y, x = np.ogrid[-qb: qb + 1, -qb: qb + 1]
 mask = x * x + y * y <= qb * qb
 # A little clumsy. Should improve
 Mq1 = np.vstack([[mask[:qb, :qb] == 0], [mask[:qb, :qb] == 0], [
 mask[:qb, :qb] == 0]]).transpose([1, 2, 0])
 figmattmp_withborder[:qb, :qb, :][Mq1] = 255
 Mq1 = np.vstack([[mask[:qb, -qb:] == 0], [mask[:qb, -qb:]
 == 0], [mask[:qb, -qb:] == 0]]).transpose([1, 2, 0])
 figmattmp_withborder[:qb, -qb:, :][Mq1] = 255
 Mq1 = np.vstack([[mask[-qb:, :qb] == 0], [mask[-qb:, :qb]
 == 0], [mask[-qb:, :qb] == 0]]).transpose([1, 2, 0])
 figmattmp_withborder[-qb:, :qb, :][Mq1] = 255
 Mq1 = np.vstack([[mask[-qb:, -qb:] == 0], [mask[-qb:, -qb:]
 == 0], [mask[-qb:, -qb:] == 0]]).transpose([1, 2, 0])
 figmattmp_withborder[-qb:, -qb:, :][Mq1] = 255

 #scale and sheer
 scale = np.matrix([[1.5, 0, 0], [0, 3, 0], [0, 0, 1]])
 sheer = np.matrix([[1, np.tan(np.pi / 12), 0], [0, 1, 0], [0, 0, 1]])

 # apply affine transformation
 figmattmp = ndimage.affine_transform(
 figmattmp_withborder, sheer * (scale), offset=[-35 * q, 0, 0], cval=255)

 # At the moment the alpha part does not work if the background colour is anything but white.
 # Also used for detecting where the graphlets are in the image.
 trans = np.where(np.sum(figmattmp, axis=2) == 255 * 3)
 alphamat = np.ones([figmattmp.shape[0], figmattmp.shape[0]])
 alphamat[trans[0], trans[1]] = 0
 figmattmp = np.dstack([figmattmp, alphamat])

 # Add graphlet to matrix
 if n == 0:
 figmat[:, n * (80 * q):((n + 1) * (80 * q) + (qb * 2))] = figmattmp
 else:
 figmat[:, n * (80 * q) - int((n * q * 80) / 2):int(((n + 1)
 * (80 * q) + (qb * 2)) - (n * q * 80) / 2)] = figmattmp

 # Fix colours - due to imshows weirdness when taking nxnx3
 figmat[:, :, 0:3] = figmat[:, :, 0:3] / 255
 # Cut end of matrix off that isn't need
 figmat = figmat[:, :-int((q / 2) * 80), :]
 fid = np.where(figmat[:, :, -1] > 0)
 fargmin = np.argmin(fid[0])
 ymax = np.max(fid[0])
 yright = np.max(np.where(figmat[:, fid[1][fargmin], -1] > 0))
 xtickloc = np.where(figmat[ymax, :, -1] > 0)[0]
 # In case there are multiple cases of xtickloc in same graphlet (i.e. they all have the same lowest value)
 xtickloc = np.delete(xtickloc, np.where(np.diff(xtickloc) == 1)[0] + 1)

 fid = np.where(figmat[:, :, -1] > 0)
 ymin = np.min(fid[0])
 topfig = np.where(figmat[ymin, :, -1] > 0)[0]
 topfig = topfig[0:len(topfig):int(len(topfig) / netin.shape[-1])]

 # Make squares of non transparency around each figure (this fixes transparency issues when white is in the colormap)
 # for n in range(0,len(topfig)):
 # fid=np.where(figmat[ymin:ymax,xtickloc[n]:topfig[n],-1]==0)
 # figmat[ymin:ymax,xtickloc[n]:topfig[n],:3][fid[0],fid[1]]=1
 # figmat[ymin+q:ymax-q,xtickloc[n]+q:topfig[n]-q,-1]=1

 # Create figure
 # Sharped edges of figure with median filter
 if sharpen == 'yes':
 figmat[:, :, :-1] = ndimage.median_filter(figmat[:, :, :-1], 3)
 ax.imshow(figmat[:, :, :-1], zorder=1)
 ax.spines['left'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.spines['top'].set_visible(False)
 ax.spines['bottom'].set_visible(False)
 ax.set_xticklabels('')
 ax.set_yticklabels('')
 ax.set_xticks([])
 ax.set_yticks([])

 L = int((((netin.shape[-1] - 3) + 1) * (80 * q) +
 (qb * 2)) - ((netin.shape[-1] - 3) * q * 80) / 2 - q)
 _ = [ax.plot(range(topfig[i], xt), np.zeros(len(range(topfig[i], xt))) + yright,
 color='k', linestyle=':', zorder=2) for i, xt in enumerate(xtickloc[1:])]
 ax.plot(range(0, L), np.zeros(L) + ymax,
 color='k', linestyle=':', zorder=2)
 _ = [ax.plot(np.zeros(q * 10) + xt, np.arange(ymax, ymax + q * 10),
 color='k', linestyle=':', zorder=2) for xt in xtickloc]
 _ = [ax.text(xt, ymax + q * 20, str(round((i + t0) * Fs, 5)),
 horizontalalignment='center',) for i, xt in enumerate(xtickloc)]

 ylim = ax.axes.get_ylim()
 xlim = ax.axes.get_xlim()
 ax.set_ylim(ylim[0] + q * 15, 0)
 ax.set_xlim(xlim[0] - q * 20, xlim[1])
 ax.set_xlabel('Time' + timeunit)
 return ax

 Source code for teneto.plot.slice_plot

"""Draw a slice_graph"""
import numpy as np
from ..utils import check_input, graphlet2contact

[docs]def slice_plot(netin, ax, nodelabels=None, timelabels=None,
 communities=None, plotedgeweights=False, edgeweightscalar=1,
 timeunit='', linestyle='k-', cmap=None, nodesize=100,
 nodekwargs=None, edgekwargs=None):
 r"""
 Fuction draws "slice graph".

 A slice plot plots all the nodes per time point as a column
 with Bezier curvers connecting connected nodes.

 Parameters

 netin : array, dict
 temporal network input (graphlet or contact)
 ax : matplotlib figure handles.
 nodelabels : list
 nodes labels. List of strings.
 timelabels : list
 labels of dimension Graph is expressed across. List of strings.
 communities : array
 array of size: (time) or (node,time). Nodes will be coloured accordingly.
 plotedgeweights : bool
 if True, edges will vary in size (default False)
 edgeweightscalar : int
 scalar to multiply all edges if tweaking is needed.
 timeunit : string
 unit time axis is in.
 linestyle : string
 line style of Bezier curves.
 nodesize : int
 size of nodes
 nodekwargs : dict
 any additional kwargs for matplotlib.plt.scatter for the nodes
 edgekwargs : dict
 any additional kwargs for matplotlib.plt.plots for the edges

 Returns

 ax : axis handle of slice graph

 Examples

 Create a network with some metadata

 >>> import numpy as np
 >>> import teneto
 >>> import matplotlib.pyplot as plt
 >>> np.random.seed(2017) # For reproduceability
 >>> N = 5 # Number of nodes
 >>> T = 10 # Number of timepoints
 >>> # Probability of edge activation
 >>> birth_rate = 0.2
 >>> death_rate = .9
 >>> # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007
 >>> cfg={}
 >>> cfg['Fs'] = 1
 >>> cfg['timeunit'] = 'Years'
 >>> cfg['t0'] = 2007 #First year in network
 >>> cfg['nodelabels'] = ['Ashley','Blake','Casey','Dylan','Elliot'] # Node names
 >>> #Generate network
 >>> C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg)

 Now this network can be plotted

 >>> fig,ax = plt.subplots(figsize=(10,3))
 >>> ax = teneto.plot.slice_plot(C, ax, cmap='Pastel2')
 >>> plt.tight_layout()
 >>> fig.show()

 .. plot::

 import numpy as np
 import teneto
 import matplotlib.pyplot as plt
 np.random.seed(2017) # For reproduceability
 N = 5 # Number of nodes
 T = 10 # Number of timepoints
 # Probability of edge activation
 birth_rate = 0.2
 death_rate = .9
 # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007
 cfg={}
 cfg['Fs'] = 1
 cfg['timeunit'] = 'Years'
 cfg['t0'] = 2007 #First year in network
 cfg['nodelabels'] = ['Ashley','Blake','Casey','Dylan','Elliot']
 #Generate network
 C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg)
 fig,ax = plt.subplots(figsize=(10,3))
 cmap = 'Pastel2'
 ax = teneto.plot.slice_plot(C,ax,cmap=cmap)
 plt.tight_layout()
 fig.show()

 """
 # Get input type (C or G)
 inputType = check_input(netin)
 # Convert C representation to G

 if inputType == 'G':
 netin = graphlet2contact(netin)
 inputType = 'C'
 edgelist = [tuple(np.array(e[0:2]) + e[2] * netin['netshape'][0])
 for e in netin['contacts']]

 if nodelabels is not None and len(nodelabels) == netin['netshape'][0]:
 pass
 elif nodelabels is not None and len(nodelabels) != netin['netshape'][0]:
 raise ValueError('specified node label length does not match netshape')
 elif nodelabels is None and netin['nodelabels'] == '':
 nodelabels = np.arange(1, netin['netshape'][0] + 1)
 else:
 nodelabels = netin['nodelabels']

 if timelabels is not None and len(timelabels) == netin['netshape'][-1]:
 pass
 elif timelabels is not None and len(timelabels) != netin['netshape'][-1]:
 raise ValueError('specified time label length does not match netshape')
 elif timelabels is None and str(netin['t0']) == '':
 timelabels = np.arange(1, netin['netshape'][-1] + 1)
 else:
 timelabels = np.arange(netin['t0'], netin['Fs'] *
 netin['netshape'][-1] + netin['t0'], netin['Fs'])

 if timeunit is None:
 timeunit = netin['timeunit']

 timeNum = len(timelabels)
 nodeNum = len(nodelabels)
 posy = np.tile(list(range(0, nodeNum)), timeNum)
 posx = np.repeat(list(range(0, timeNum)), nodeNum)

 if nodekwargs is None:
 nodekwargs = {}
 if edgekwargs is None:
 edgekwargs = {}
 if cmap:
 nodekwargs['cmap'] = cmap
 if 'c' not in nodekwargs:
 nodekwargs['c'] = posy
 if communities is not None:
 # check if temporal or static
 if len(communities.shape) == 1:
 nodekwargs['c'] = np.tile(communities, timeNum)
 else:
 nodekwargs['c'] = communities.flatten(order='F')

 # plt.plot(points)
 # Draw Bezier vectors around egde positions
 for ei, edge in enumerate(edgelist):
 if plotedgeweights and netin['nettype'][0] == 'w':
 edgekwargs['linewidth'] = netin['values'][ei] * edgeweightscalar
 bvx, bvy = bezier_points(
 (posx[edge[0]], posy[edge[0]]), (posx[edge[1]], posy[edge[1]]), nodeNum, 20)
 ax.plot(bvx, bvy, linestyle, **edgekwargs)
 ax.set_yticks(range(0, len(nodelabels)))
 ax.set_xticks(range(0, len(timelabels)))
 ax.set_yticklabels(nodelabels)
 ax.set_xticklabels(timelabels)
 ax.grid()
 ax.set_frame_on(False)
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()
 ax.set_xlim([min(posx) - 1, max(posx) + 1])
 ax.set_ylim([min(posy) - 1, max(posy) + 1])
 ax.scatter(posx, posy, s=nodesize, zorder=10, **nodekwargs)
 if timeunit != '':
 timeunit = ' (' + timeunit + ')'
 ax.set_xlabel('Time' + timeunit)

 return ax

Following 3 Function that draw vertical curved lines from around points.
p1 nad p2 are start and end trupes (x,y coords) and pointN is the resolution of the points
negxLim tries to restrain how far back along the x axis the bend can go.
def bezier_points(p1, p2, negxLim, pointN):
 ts = [t / pointN for t in range(pointN + 1)]
 d = p1[0] - (max(p1[1], p2[1]) - min(p1[1], p2[1])) / negxLim
 bezier = make_bezier([p1, (d, p1[1]), (d, p2[1]), p2])
 points = bezier(ts)
 bvx = [i[0] for i in points]
 bvy = [i[1] for i in points]
 return bvx, bvy

def make_bezier(xys):
 # This function originated from the plot.ly's documentation for python API.
 # xys should be a sequence of 2-tuples (Bezier control points)
 n = len(xys)
 combinations = pascal_row(n - 1)

 def bezier(ts):
 # This uses the generalized formula for bezier curves
 # http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Generalization
 result = []
 for t in ts:
 tpowers = (t**i for i in range(n))
 upowers = reversed([(1 - t)**i for i in range(n)])
 coefs = [c * a * b for c, a,
 b in zip(combinations, tpowers, upowers)]
 result.append(
 tuple(sum([coef * p for coef, p in zip(coefs, ps)]) for ps in zip(*xys)))
 return result
 return bezier

def pascal_row(n):
 # This function originated from the plot.ly's documentation for python API.
 # This returns the nth row of Pascal's Triangle
 result = [1]
 x, numerator = 1, n
 for denominator in range(1, n // 2 + 1):
 # print(numerator,denominator,x)
 x *= numerator
 x /= denominator
 result.append(x)
 numerator -= 1
 if n & 1 == 0:
 # n is even
 result.extend(reversed(result[:-1]))
 else:
 result.extend(reversed(result))
 return result

 Source code for teneto.timeseries.derive

"""derive: different methods to derive time-varying functional connectivity"""

import numpy as np
from statsmodels.stats.weightstats import DescrStatsW
from ..utils import set_diagonal, get_distance_function
from .postprocess import postpro_pipeline
from .report import gen_report
import scipy.stats as sps
from scipy.signal import hilbert

[docs]def derive_temporalnetwork(data, params):
 """
 Derives connectivity from the data.

 A lot of data is inherently built with edges
 (e.g. communication between two individuals).
 However other networks are derived from the covariance of time series
 (e.g. brain networks between two regions).

 Covariance based metrics deriving time-resolved networks can be done in multiple ways.
 There are other methods apart from covariance based.

 Derive a weight vector for each time point and then the corrrelation coefficient
 for each time point.

 Paramters

 data : array
 Time series data to perform connectivity derivation on.
 (Default dimensions are: (time as rows, nodes as columns).
 Change params{'dimord'} if you want it the other way (see below).

 params : dict
 Parameters for each method (see below).

 Necessary paramters
 ===================

 method : str
 method: "distance","slidingwindow", "taperedslidingwindow",
 "jackknife", "multiplytemporalderivative".
 Alternatively, method can be a weight matrix of size time x time.

 Different methods have method specific paramaters (see below)

 Params for all methods (optional)
 =================================

 postpro : "no" (default).
 Other alternatives are: "fisher", "boxcox", "standardize"
 and any combination seperated by a + (e,g, "fisher+boxcox").
 See postpro_pipeline for more information.
 dimord : str
 Dimension order: 'node,time' (default) or 'time,node'.
 People like to represent their data differently and this is an easy way
 to be sure that you are inputing the data in the correct way.
 analysis_id : str or int
 add to identify specfic analysis.
 Generated report will be placed in './report/' + analysis_id + '/derivation_report.html
 report : bool
 False by default.
 If true, A report is saved in ./report/[analysis_id]/derivation_report.html if "yes"
 report_path : str
 String where the report is saved.
 Default is ./report/[analysis_id]/derivation_report.html

 Methods specific parameters
 ===========================

 method == "distance"
    ~~~~~~~~~~~~~~~~~~~

    Distance metric calculates 1/Distance metric weights, and scales between 0 and 1.
    W[t,t] is excluded from the scaling and then set to 1.

    params['distance']: str
        Distance metric (e.g. 'euclidean'). See teneto.utils.get_distance_function for more info

    When method == "slidingwindow"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 params['windowsize'] : int
 Size of window.

 When method == "taperedslidingwindow"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    params['windowsize'] : int
        Size of window.
    params['distribution'] : str
        Scipy distribution (e.g. 'norm','expon'). Any distribution here: https://docs.scipy.org/doc/scipy/reference/stats.html
    params['distribution_params'] : dict
        Dictionary of distribution parameter, excluding the data "x" to generate pdf.

        The data x should be considered to be centered at 0 and have a length of window size.
         (i.e. a window size of 5 entails x is [-2, -1, 0, 1, 2] a window size of 6 entails [-2.5, -1.5, 0.5, 0.5, 1.5, 2.5])
        Given x params['distribution_params'] contains the remaining parameters.

        e.g. normal distribution requires pdf(x, loc, scale) where loc=mean and scale=std.

        Say we have a gaussian distribution, a window size of 21 and params['distribution_params'] = {'loc': 0, 'scale': 5}.
         This will lead to a gaussian with its peak at in the middle of each window with a standard deviation of 5.

    When method == "temporalderivative"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 params['windowsize'] : int
 Size of window.

 When method == "jackknife"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    No parameters are necessary.

    Optional parameters:

    params['weight-var'] : array, (optional)
        NxN array to weight the JC estimates (standerdized-JC*W). If weightby is selected, do not standerdize in postpro.
    params['weight-mean'] : array, (optional)
        NxN array to weight the JC estimates (standerdized-JC+W). If weightby is selected, do not standerdize in postpro.


    When method == 'instantaneousphasesync'
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 No parameters are necessary.

 Returns

 G : array
 Connectivity estimates (nodes x nodes x time)

 READ MORE

 About the general weighted pearson approach used for most methods, see:
 Thompson & Fransson (2019) A common framework for the problem of deriving estimates of dynamic functional brain connectivity.
 Neuroimage. (https://doi.org/10.1016/j.neuroimage.2017.12.057)

 SEE ALSO

 postpro_pipeline, *gen_report*

 """
 report = {}

 if 'dimord' not in params.keys():
 params['dimord'] = 'node,time'

 if 'report' not in params.keys():
 params['report'] = False

 if 'analysis_id' not in params.keys():
 params['analysis_id'] = ''

 if 'postpro' not in params.keys():
 params['postpro'] = 'no'

 if params['report'] == 'yes' or params['report']:

 if 'analysis_id' not in params.keys():
 params['analysis_id'] = ''

 if 'report_path' not in params.keys():
 params['report_path'] = './report/' + params['analysis_id']

 if 'report_filename' not in params.keys():
 params['report_filename'] = 'derivation_report.html'

 if params['dimord'] == 'node,time':
 data = data.transpose()

 sw_alternatives = ['sliding window', 'slidingwindow']
 tsw_alternatives = ['tapered sliding window', 'taperedslidingwindow']
 sd_alternatives = ['distance', "spatial distance",
 "node distance", "nodedistance", "spatialdistance"]
 mtd_alternatives = ['mtd', 'multiply temporal derivative',
 'multiplytemporalderivative', 'temporal derivative', "temporalderivative"]
 ip_alternatives = ['instantaneousphasesync', 'ips']
 jc_alternatives = ['jackknife', 'jackknifecorrelation', 'jc']
 if isinstance(params['method'], str):
 if params['method'] in jc_alternatives:
 weights, report = _weightfun_jackknife(data.shape[0], report)
 relation = 'weight'
 elif params['method'] in sw_alternatives:
 weights, report = _weightfun_sliding_window(
 data.shape[0], params, report)
 relation = 'weight'
 elif params['method'] in tsw_alternatives:
 weights, report = _weightfun_tapered_sliding_window(
 data.shape[0], params, report)
 relation = 'weight'
 elif params['method'] in sd_alternatives:
 weights, report = _weightfun_spatial_distance(data, params, report)
 relation = 'weight'
 elif params['method'] in mtd_alternatives:
 R, report = _temporal_derivative(data, params, report)
 relation = 'coupling'
 elif params['method'] in ip_alternatives:
 R, report = _instantaneous_phasesync(data, params, report)
 relation = 'coupling'
 else:
 raise ValueError(
 'Unrecognoized method. See derive_with_weighted_pearson documentation for predefined methods or enter own weight matrix')
 else:
 try:
 weights = np.array(params['method'])
 relation = 'weight'
 except:
 raise ValueError(
 'Unrecognoized method. See documentation for predefined methods')
 if weights.shape[0] != weights.shape[1]:
 raise ValueError("weight matrix should be square")
 if weights.shape[0] != data.shape[0]:
 raise ValueError("weight matrix must equal number of time points")

 if relation == 'weight':
 # Loop over each weight vector and calculate pearson correlation.
 # Note, should see if this can be made quicker in future.
 R = np.array(
 [DescrStatsW(data, weights[i, :]).corrcoef for i in range(0, weights.shape[0])])
 # Make node,node,time
 R = R.transpose([1, 2, 0])

 # Correct jackknife direction
 if params['method'] == 'jackknife':
 # Correct inversion
 R = R * -1
 jc_z = 0
 if 'weight-var' in params.keys():
 R = np.transpose(R, [2, 0, 1])
 R = (R - R.mean(axis=0)) / R.std(axis=0)
 jc_z = 1
 R = R * params['weight-var']
 R = R.transpose([1, 2, 0])
 if 'weight-mean' in params.keys():
 R = np.transpose(R, [2, 0, 1])
 if jc_z == 0:
 R = (R - R.mean(axis=0)) / R.std(axis=0)
 R = R + params['weight-mean']
 R = np.transpose(R, [1, 2, 0])
 R = set_diagonal(R, 1)

 if params['postpro'] != 'no':
 R, report = postpro_pipeline(
 R, params['postpro'], report)
 R = set_diagonal(R, 1)

 if params['report'] == 'yes' or params['report']:
 gen_report(report, params['report_path'], params['report_filename'])
 return R

def _weightfun_jackknife(T, report):
 """Creates the weights for the jackknife method. See func: teneto.timeseries.derive_temporalnetwork."""

 weights = np.ones([T, T])
 np.fill_diagonal(weights, 0)
 report['method'] = 'jackknife'
 report['jackknife'] = ''
 return weights, report

def _weightfun_sliding_window(T, params, report):
 """Creates the weights for the sliding window method. See func: teneto.timeseries.derive_temporalnetwork."""
 weightat0 = np.zeros(T)
 weightat0[0:params['windowsize']] = np.ones(params['windowsize'])
 weights = np.array([np.roll(weightat0, i)
 for i in range(0, T + 1 - params['windowsize'])])
 report['method'] = 'slidingwindow'
 report['slidingwindow'] = params
 report['slidingwindow']['taper'] = 'untapered/uniform'
 return weights, report

def _weightfun_tapered_sliding_window(T, params, report):
 """Creates the weights for the tapered method. See func: teneto.timeseries.derive_temporalnetwork."""
 x = np.arange(-(params['windowsize'] - 1) / 2, (params['windowsize']) / 2)
 taper = getattr(sps, params['distribution']).pdf(
 x, **params['distribution_params'])

 weightat0 = np.zeros(T)
 weightat0[0:params['windowsize']] = taper
 weights = np.array([np.roll(weightat0, i)
 for i in range(0, T + 1 - params['windowsize'])])
 report['method'] = 'slidingwindow'
 report['slidingwindow'] = params
 report['slidingwindow']['taper'] = taper
 report['slidingwindow']['taper_window'] = x
 return weights, report

def _weightfun_spatial_distance(data, params, report):
 """Creates the weights for the spatial distance method. See func: teneto.timeseries.derive_temporalnetwork."""
 distance = get_distance_function(params['distance'])
 weights = np.array([distance(data[n, :], data[t, :]) for n in np.arange(
 0, data.shape[0]) for t in np.arange(0, data.shape[0])])
 weights = np.reshape(weights, [data.shape[0], data.shape[0]])
 np.fill_diagonal(weights, np.nan)
 weights = 1 / weights
 weights = (weights - np.nanmin(weights)) / \
 (np.nanmax(weights) - np.nanmin(weights))
 np.fill_diagonal(weights, 1)
 return weights, report

def _temporal_derivative(data, params, report):
 """Performs mtd method. See func: teneto.timeseries.derive_temporalnetwork."""
 # Data should be timexnode
 report = {}

 # Derivative
 tdat = data[1:, :] - data[:-1, :]
 # Normalize
 tdat = tdat / np.std(tdat, axis=0)
 # Coupling
 coupling = np.array([tdat[:, i] * tdat[:, j] for i in np.arange(0,
 tdat.shape[1]) for j in np.arange(0, tdat.shape[1])])
 coupling = np.reshape(
 coupling, [tdat.shape[1], tdat.shape[1], tdat.shape[0]])
 # Average over window using strides
 shape = coupling.shape[:-1] + (coupling.shape[-1] -
 params['windowsize'] + 1, params['windowsize'])
 strides = coupling.strides + (coupling.strides[-1],)
 coupling_windowed = np.mean(np.lib.stride_tricks.as_strided(
 coupling, shape=shape, strides=strides), -1)

 report = {}
 report['method'] = 'temporalderivative'
 report['temporalderivative'] = {}
 report['temporalderivative']['windowsize'] = params['windowsize']

 return coupling_windowed, report

def _instantaneous_phasesync(data, params, report):
 """Derivce instantaneous phase synchrony. See func: teneto.timeseries.derive_temporalnetwork."""
 analytic_signal = hilbert(data.transpose())
 instantaneous_phase = np.angle(analytic_signal)
 ips = np.zeros([data.shape[1], data.shape[1], data.shape[0]])
 for n in range(data.shape[1]):
 for m in range(data.shape[1]):
 ips[n, m, :] = 1 - np.sin(np.abs(instantaneous_phase[n] - instantaneous_phase[m])/2)

 report = {}
 report['method'] = 'instantaneousphasesync'
 report['instantaneousphasesync'] = {}

 return ips, report

 Source code for teneto.timeseries.postprocess

"""File contains functions for postprocessing derivation of connectivity estimates"""

import numpy as np
import scipy as sp
from ..utils import set_diagonal

[docs]def postpro_fisher(data, report=None):
 """
 Performs fisher transform on everything in data.

 If report variable is passed, this is added to the report.
 """
 if not report:
 report = {}
 # Due to rounding errors
 data[data < -0.99999999999999] = -1
 data[data > 0.99999999999999] = 1
 fisher_data = 0.5 * np.log((1 + data) / (1 - data))
 report['fisher'] = {}
 report['fisher']['performed'] = 'yes'
 #report['fisher']['diagonal'] = 'zeroed'
 return fisher_data, report

[docs]def postpro_boxcox(data, report=None):
 """
 Performs box cox transform on everything in data.

 If report variable is passed, this is added to the report.
 """
 if not report:
 report = {}
 # Note the min value of all time series will now be at least 1.
 mindata = 1 - np.nanmin(data)
 data = data + mindata
 ind = np.triu_indices(data.shape[0], k=1)

 boxcox_list = np.array([sp.stats.boxcox(np.squeeze(
 data[ind[0][n], ind[1][n], :])) for n in range(0, len(ind[0]))])

 boxcox_data = np.zeros(data.shape)
 boxcox_data[ind[0], ind[1], :] = np.vstack(boxcox_list[:, 0])
 boxcox_data[ind[1], ind[0], :] = np.vstack(boxcox_list[:, 0])

 bccheck = np.array(np.transpose(boxcox_data, [2, 0, 1]))
 bccheck = (bccheck - bccheck.mean(axis=0)) / bccheck.std(axis=0)
 bccheck = np.squeeze(np.mean(bccheck, axis=0))
 np.fill_diagonal(bccheck, 0)

 report['boxcox'] = {}
 report['boxcox']['performed'] = 'yes'
 report['boxcox']['lambda'] = [
 tuple([ind[0][n], ind[1][n], boxcox_list[n, -1]]) for n in range(0, len(ind[0]))]
 report['boxcox']['shift'] = mindata
 report['boxcox']['shited_to'] = 1

 if np.sum(np.isnan(bccheck)) > 0:
 report['boxcox'] = {}
 report['boxcox']['performed'] = 'FAILED'
 report['boxcox']['failure_reason'] = (
 'Box cox transform is returning edges with uniform values through time. '
 'This is probabaly due to one or more outliers or a very skewed distribution. '
 'Have you corrected for sources of noise (e.g. movement)? '
 'If yes, some time-series might need additional transforms to approximate to Gaussian.'
)
 report['boxcox']['failure_consequence'] = (
 'Box cox transform was skipped from the postprocess pipeline.'
)
 boxcox_data = data - mindata
 error_msg = ('TENETO WARNING: Box Cox transform problem. \n'
 'Box Cox transform not performed. \n'
 'See report for more details.')
 print(error_msg)

 return boxcox_data, report

[docs]def postpro_standardize(data, report=None):
 """
 Standardizes everything in data (along axis -1).

 If report variable is passed, this is added to the report.
 """
 if not report:
 report = {}
 # First make dim 1 = time.
 data = np.transpose(data, [2, 0, 1])
 standardized_data = (data - data.mean(axis=0)) / data.std(axis=0)
 standardized_data = np.transpose(standardized_data, [1, 2, 0])
 report['standardize'] = {}
 report['standardize']['performed'] = 'yes'
 report['standardize']['method'] = 'Z-score'
 # The above makes self connections to nan, set to 1.
 data = set_diagonal(data, 1)
 return standardized_data, report

[docs]def postpro_pipeline(data, pipeline, report=None):
 """
 Function to call multiple postprocessing steps.

 Parameters

 data : array
 pearson correlation values in temporal matrix form (node,node,time)
 pipeline : list or str
 (if string, each steps seperated by + sign).

 :options: 'fisher','boxcox','standardize'

 Each of the above 3 can be specified. If fisher is used, it must be before boxcox.
 If standardize is used it must be after boxcox and fisher.

 report : bool
 If true, appended to report.

 Returns

 postpro_data : array
 postprocessed data
 postprocessing_info : dict
 Information about postprocessing

 """

 postpro_functions = {
 'fisher': postpro_fisher,
 'boxcox': postpro_boxcox,
 'standardize': postpro_standardize
 }

 if not report:
 report = {}

 if isinstance(pipeline, str):
 pipeline = pipeline.split('+')

 report['postprocess'] = []
 for postpro_step in pipeline:
 report['postprocess'].append(postpro_step)
 postpro_data, report = postpro_functions[postpro_step](data, report)
 return postpro_data, report

 Source code for teneto.timeseries.remove_confounds

import nilearn
import nilearn
import pandas as pd
from ..neuroimagingtools import load_tabular_file

[docs]def remove_confounds(timeseries, confounds, confound_selection=None, clean_params=None):
 """
 Removes specified confounds using nilearn.signal.clean

 Parameters

 timeseries : array or dataframe
 input timeseries with dimensions: (node,time)
 confounds : array or dataframe
 List of confounds. Expected format is (confound, time).
 If using TenetoBIDS, this does not need to be specified.
 confound_selection : list
 List of confounds. If None, all confoudns are removed
 clean_params : dict
 Dictionary of kawgs to pass to nilearn.signal.clean

 Returns

 Says all TenetBIDS.get_selected_files with confounds removed with _rmconfounds at the end.

 Note

 There may be some issues regarding loading non-cleaned data through the TenetoBIDS functions instead of the cleaned data. This depeneds on when you clean the data.
 """

 index = None
 if isinstance(timeseries, pd.DataFrame):
 index = timeseries.index
 timeseries = timeseries.values

 if clean_params is None:
 clean_params = {}

 if isinstance(confounds, str):
 confounds = load_tabular_file(confounds)
 if confound_selection is not None:
 for c in confound_selection:
 if c not in confounds.columns:
 raise ValueError('Confound: ' + str(c) +
 ' is not in confounds dataframe')
 confounds = confounds[confound_selection]

 warningtxt = ''
 if confounds.isnull().any().any():
 # Not sure what is the best way to deal with this.
 warningtxt = 'Some confounds contain n/a.\n Setting these values to median of confound.'
 print('WARNING: ' + warningtxt)
 confounds = confounds.fillna(confounds.median())

 if isinstance(confounds, pd.DataFrame):
 confounds = confounds.values

 # nilearn works with time,node data
 timeseries = timeseries.transpose()
 cleaned_timeseries = nilearn.signal.clean(
 timeseries, confounds=confounds, **clean_params)
 cleaned_timeseries = cleaned_timeseries.transpose()
 cleaned_timeseries = pd.DataFrame(cleaned_timeseries)
 if index is not None:
 cleaned_timeseries.index = index
 return cleaned_timeseries

 Source code for teneto.timeseries.report

"""Create report about derive"""

import os
import matplotlib.pyplot as plt
import numpy as np

[docs]def gen_report(report, sdir='./', report_name='report.html'):
 """Generates report of derivation and postprocess steps in teneto.timeseries"""

 # Create report directory
 if not os.path.exists(sdir):
 os.makedirs(sdir)

 # Add a slash to file directory if not included to avoid DirNameFleName
 # instead of DirName/FileName being creaated
 if sdir[-1] != '/':
 sdir += '/'

 report_html = '<html><body>'

 if 'method' in report.keys():

 report_html += "<h1>Method: " + report['method'] + "</h1><p>"

 for i in report[report['method']]:

 if i == 'taper_window':

 fig, ax = plt.subplots(1)
 ax.plot(report[report['method']]['taper_window'],
 report[report['method']]['taper'])
 ax.set_xlabel('Window (time). 0 in middle of window.')
 ax.set_title(
 'Taper from ' + report[report['method']]['distribution'] + ' distribution (PDF).')
 fig.savefig(sdir + 'taper.png')

 report_html += "" + "<p>"

 else:

 report_html += "- " + i + ": " + \
 str(report[report['method']][i]) + "
"

 if 'postprocess' in report.keys():

 report_html += "<p><h2>Postprocessing:</h2><p>"

 report_html += "Pipeline: "

 for i in report['postprocess']:

 report_html += " " + i + ","

 for i in report['postprocess']:

 report_html += "<p><h3>" + i + "</h3><p>"

 for j in report[i]:

 if j == 'lambda':

 report_html += "- " + j + ": " + "
"

 lambda_val = np.array(report['boxcox']['lambda'])
 fig, ax = plt.subplots(1)
 ax.hist(lambda_val[:, -1])
 ax.set_xlabel('lambda')
 ax.set_ylabel('frequency')
 ax.set_title('Histogram of lambda parameter')
 fig.savefig(sdir + 'boxcox_lambda.png')

 report_html += "" + "<p>"
 report_html += "Data located in " + sdir + "boxcox_lambda.csv <p>"

 np.savetxt(sdir + "boxcox_lambda.csv",
 lambda_val, delimiter=",")

 else:

 report_html += "- " + j + ": " + \
 str(report[i][j]) + "
"

 report_html += '</body></html>'

 with open(sdir + report_name, 'w') as file:
 file.write(report_html)
 file.close()

 Source code for teneto.trajectory.compression

"""Calculate compression of trajectory."""
import numpy as np
from ..utils import process_input

[docs]def create_traj_ranges(start, stop, N):
 """
 Fills in the trajectory range.

 # Adapted from https://stackoverflow.com/a/40624614
 """
 steps = (1.0/(N-1)) * (stop - start)
 if np.isscalar(steps):
 return steps*np.arange(N) + start
 else:
 return steps[:, None]*np.arange(N) + start[:, None]

[docs]def rdp(datin, delta=1, report=10, quiet=True):
 """
 """
 # This needs to be added to utils for trajectory detection
 # T will be for trajectory or timeseries data, (roi x time).
 datin, datinfo = process_input(datin, ['C', 'G', 'TO', 'T'])
 # if network, then make to roi,time shape. If T, nothing needs to be done.
 if len(datin.shape) == 3:
 ind = np.triu_indices(datin.shape[0], k=1)
 datin = datin[ind[0], ind[1], :]
 index_out = np.array([ind[0], ind[1]]).transpose()
 else:
 index_out = np.arange(0, datin.shape[0])

 # Interprets data to be rois x time.
 datin = np.array(datin, ndmin=2)
 s = 0
 e = datin.shape[-1]

 # Create straight line between start and end point
 trajectory = create_traj_ranges(
 datin[:, s], datin[:, e-1], e-s)

 # Create lists of trajectories
 trajectory_points = [np.array([s, e-1]) for n in np.arange(datin.shape[0])]
 # Preset some outputs
 reduction = np.zeros(len(trajectory_points))
 error = np.zeros(len(trajectory_points))
 amp_weighted_error = np.zeros(len(trajectory_points))
 # Stopping condition and round preset
 stop_cond = 0
 round_count = 0
 while stop_cond < datin.shape[0]:
 traj_data_diff = np.abs(datin-trajectory)
 ind = np.argmax(traj_data_diff, axis=1)

 for i, ix in enumerate(ind):
 ind_bool = traj_data_diff[i, ix] > delta
 if ind_bool:
 # Get trajectory breaking point indicies
 traj_ind = np.searchsorted(
 trajectory_points[i], ix, side='left')
 traj_start = trajectory_points[i][traj_ind-1]
 traj_end = trajectory_points[i][traj_ind]
 # Make new trajectories
 r1 = np.arange(traj_start, ix+1)
 trajectory[i, r1] = create_traj_ranges(
 trajectory[i, traj_start], datin[i, ix], len(r1))
 r2 = np.arange(ix, traj_end+1)
 trajectory[i, r2] = create_traj_ranges(
 datin[i, ix], trajectory[i, traj_end], len(r2))
 # Add new point
 trajectory_points[i] = np.insert(
 trajectory_points[i], traj_ind, ix)
 else:
 stop_cond += 1

 round_count += 1
 if np.remainder(round_count, report) == 0 and not quiet:
 print('After round: ' + str(round_count) + ', ' +
 str(np.round((stop_cond/datin.shape[0])*100, 2)) + '% completed data reduction')

 for i in np.arange(datin.shape[0]):
 reduction[i] = float(1-len(trajectory_points[i])/datin.shape[1])
 error[i] = float(np.mean(traj_data_diff[i]))
 amp_weighted_error[i] = float(
 np.mean(np.abs(datin[i, :])*traj_data_diff[i]))

 # Construct ouput dictionary
 traj = datinfo
 traj['trajectory'] = trajectory
 traj['trajectory_points'] = trajectory_points
 traj['reduction'] = reduction
 traj['error'] = error
 traj['weighted_error'] = amp_weighted_error
 traj['nettype'] = 't'
 traj['index'] = index_out
 traj.pop('inputtype')

 return traj

 Source code for teneto.utils.io

import networkx as nx
from .utils import get_network_when

[docs]def tnet_to_nx(df, t=None):
 """Creates undirected networkx object"""
 if t is not None:
 df = get_network_when(df, t=t)
 if 'weight' in df.columns:
 nxobj = nx.from_pandas_edgelist(
 df, source='i', target='j', edge_attr='weight')
 else:
 nxobj = nx.from_pandas_edgelist(df, source='i', target='j')
 return nxobj

 Source code for teneto.utils.utils

"""General utility functions."""
import collections
import itertools
import operator
import json
import numpy as np
import pandas as pd
import scipy.spatial.distance as distance
import teneto
#from ..classes import teneto.TemporalNetwork
#from ..trajectory import rdp

[docs]def graphlet2contact(tnet, params=None):
 """

 Converts array representation to contact representation.

 Contact representation are more efficient for memory storing.
 Also includes metadata which can made it easier for plotting.
 A contact representation contains all non-zero edges.

 Parameters

 tnet : array_like
 Temporal network.
 params : dict, optional
 Dictionary of parameters for contact representation.

 Fs : int, default=1
 sampling rate.

 timeunit : str, default=''
 Sampling rate in for units (e.g. seconds, minutes, years).

 nettype : str, default='auto'
 Define what type of network. Can be:
 'auto': detects automatically;
 'wd': weighted, directed;
 'bd': binary, directed;
 'wu': weighted, undirected;
 'bu': binary, undirected.

 diagonal : int, default = 0.
 What should the diagonal be.

 timetype : str, default='discrete'
 Time units can be The params file becomes the foundation of 'C'.
 Any other information in params, will added to C.

 nodelabels : list
 Set nod labels.

 t0: int
 Time label at first index.

 Returns

 C : dict

 Contact representation of temporal network.
 Includes 'contacts', 'values' (if nettype[0]='w'),'nettype','netshape', 'Fs', 'dimord' and 'timeunit', 'timetype'.

 """
 # Create config dictionary if missing
 if params is None:
 params = {}
 # Check that temporal network is vald input.
 if tnet.shape[0] != tnet.shape[1]:
 raise ValueError(
 'Input tnet (node x node x time), requires Rows and Columns to be the same size.')
 if len(tnet.shape) == 2:
 tnet = np.atleast_3d(tnet)
 if len(tnet.shape) != 3:
 raise ValueError(
 'Input tnet must be three dimensions (node x node x time)')
 # Check number of nodes is correct, if specfied
 if 'nodelabels' in params.keys():
 if params['nodelabels']:
 if len(params['nodelabels']) != tnet.shape[0]:
 raise ValueError(
 'Specified list of node names has to be equal in length to number of nodes')
 if 't0' in params.keys():
 params['t0'] = np.atleast_1d(np.array(params['t0']))
 if len(params['t0']) != 1:
 raise ValueError(
 't0 must be sigular be either integer representing time at first temporal index)')
 params['t0'] = np.squeeze(params['t0'])
 # Check that all inputs in params are correct.

 if 'nettype' not in params.keys() or params['nettype'] == 'auto':
 params['nettype'] = gen_nettype(tnet)
 if params['nettype'] not in {'bd', 'bu', 'wd', 'wu', 'auto'}:
 raise ValueError('\'nettype\' (in params) must be a string \'wd\',\'bd\',\'wu\',\'bu\').')
 if 'Fs' not in params.keys():
 params['Fs'] = 1
 #print('Warning, no sampling rate set. Assuming 1.')
 if 'timeunit' not in params.keys():
 params['timeunit'] = ''
 if 'diagonal' not in params.keys():
 params['diagonal'] = 0
 if 'nodelabels' not in params.keys():
 params['nodelabels'] = ''
 else:
 params['nodelabels'] = list(params['nodelabels'])

 if 't0' not in params.keys():
 params['t0'] = 1
 nt = params['nettype']

 # Set diagonal to 0 to make contacts 0.
 tnet = set_diagonal(tnet, 0)

 # Very convoluted way to get all the indexes into a tuple, ordered by time
 if nt[1] == 'u':
 tnet = [np.triu(tnet[:, :, t], k=1) for t in range(0, tnet.shape[2])]
 tnet = np.transpose(tnet, [1, 2, 0])
 edg = np.where(np.abs(tnet) > 0)
 sortTime = np.argsort(edg[2])
 contacts = np.array([tuple([edg[0][i], edg[1][i], edg[2][i]])
 for i in sortTime])
 # Get each of the values if weighted matrix
 if nt[0] == 'w':
 values = list(tnet[edg[0][sortTime], edg[1]
 [sortTime], edg[2][sortTime]])

 # build output dictionary
 C = params
 C['contacts'] = contacts
 C['netshape'] = tnet.shape
 C['dimord'] = 'node,node,time'
 # Obviously this needs to change
 C['timetype'] = 'discrete'
 if nt[0] == 'w':
 C['values'] = values

 return C

[docs]def contact2graphlet(C):
 """

 Converts contact representation to array representation.

 Graphlet representation discards all meta information in contacts.

 Parameters

 C : dict
 A contact representation. Must include keys: 'dimord', 'netshape', 'nettype', 'contacts' and, if weighted, 'values'.

 Returns

 tnet : array
 Graphlet representation of temporal network.

 Note

 Returning elements of tnet will be float, even if binary graph.

 """
 # Check that contact sequence is vald input.
 if 'dimord' not in C.keys():
 raise ValueError('\'dimord\' must be present in C.')
 if C['dimord'] != 'node,node,time':
 raise ValueError('\'dimord\' must be string \'node,node,time\'.')
 if 'nettype' not in C.keys():
 raise ValueError(
 'C must include parameter \'nettype\' (wd,bd,wu,bu). \
 w: weighted network. b: binary network. u: undirected network. d: directed network')
 if C['nettype'] not in {'bd', 'bu', 'wd', 'wu'}:
 raise ValueError(
 '\'nettype\' in (C) must be a string \'wd\',\'bd\',\'wu\',\'bu\').')
 if 'netshape' not in C.keys():
 raise ValueError(
 'C must include netshape expressing size of target network (tuple)')
 if not isinstance(C['netshape'], tuple):
 raise ValueError('\'netshape\' (in C) should be a tuple')
 if len(C['netshape']) != 3:
 raise ValueError('\'netshape\' tuple should be of 3 dimensions')
 if C['nettype'][0] == 'w' and 'values' not in C.keys():
 raise ValueError('values not in C and asked for weighted network')
 if 'contacts' not in C.keys():
 raise ValueError('contacts must be expressed (list of tuples)')
 if C['timetype'] != 'discrete':
 print('Warning: timetype is not discrete. In future updates timetype in dictionary should be \'discrete\' to be converted to grpahlets')

 nt = C['nettype']

 # Preallocate
 tnet = np.zeros(C['netshape'])

 # Convert indexes of C to numpy friend idx list
 idx = np.array(list(map(list, C['contacts'])))
 if nt[0] == 'b':
 tnet[idx[:, 0], idx[:, 1], idx[:, 2]] = 1
 if nt[1] == 'u':
 tnet[idx[:, 1], idx[:, 0], idx[:, 2]] = 1
 elif nt[0] == 'w':
 tnet[idx[:, 0], idx[:, 1], idx[:, 2]] = C['values']
 if nt[1] == 'u':
 tnet[idx[:, 1], idx[:, 0], idx[:, 2]] = C['values']
 # If diagonal is not 0, fill it to whatever it is set to
 if C['diagonal'] != 0:
 tnet = set_diagonal(tnet, C['diagonal'])

 return tnet

[docs]def binarize_percent(netin, level, sign='pos', axis='time'):
 """
 Binarizes a network proprtionally. When axis='time' (only one available at the moment) then the top values for each edge time series are considered.

 Parameters

 netin : array or dict
 network (graphlet or contact representation),
 level : float
 Percent to keep (expressed as decimal, e.g. 0.1 = top 10%)
 sign : str, default='pos'
 States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa.
 axis : str, default='time'
 Specify which dimension thresholding is applied against.
 Can be 'time' (takes top % for each edge time-series) or 'graphlet'
 (takes top % for each graphlet)

 Returns

 netout : array or dict (depending on input)
 Binarized network

 """
 netin, netinfo = process_input(netin, ['C', 'G', 'TN'])
 # Set diagonal to 0
 netin = set_diagonal(netin, 0)
 if axis == 'graphlet' and netinfo['nettype'][-1] == 'u':
 triu = np.triu_indices(netinfo['netshape'][0], k=1)
 netin = netin[triu[0], triu[1], :]
 netin = netin.transpose()
 if sign == 'both':
 net_sorted = np.argsort(np.abs(netin), axis=-1)
 elif sign == 'pos':
 net_sorted = np.argsort(netin, axis=-1)
 elif sign == 'neg':
 net_sorted = np.argsort(-1*netin, axis=-1)
 else:
 raise ValueError('Unknown value for parameter: sign')
 # Predefine
 netout = np.zeros(netinfo['netshape'])
 if axis == 'time':
 # These for loops can probabaly be removed for speed
 for i in range(netinfo['netshape'][0]):
 for j in range(netinfo['netshape'][1]):
 netout[i, j, net_sorted[i, j, -
 int(round(net_sorted.shape[-1])*level):]] = 1
 elif axis == 'graphlet':
 netout_tmp = np.zeros(netin.shape)
 for i in range(netout_tmp.shape[0]):
 netout_tmp[i, net_sorted[i, -
 int(round(net_sorted.shape[-1])*level):]] = 1
 netout_tmp = netout_tmp.transpose()
 netout[triu[0], triu[1], :] = netout_tmp
 netout[triu[1], triu[0], :] = netout_tmp

 netout = set_diagonal(netout, 0)

 # If input is contact, output contact
 if netinfo['inputtype'] == 'C':
 netinfo['nettype'] = 'b' + netinfo['nettype'][1]
 netout = graphlet2contact(netout, netinfo)
 netout.pop('inputtype')
 netout.pop('values')
 netout['diagonal'] = 0

 return netout

To do: set diagonal to 0.
[docs]def binarize_rdp(netin, level, sign='pos', axis='time'):
 """
 Binarizes a network based on RDP compression.

 Parameters

 netin : array or dict
 Network (graphlet or contact representation),
 level : float
 Delta parameter which is the tolorated error in RDP compression.
 sign : str, default='pos'
 States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa.

 Returns

 netout : array or dict (dependning on input)
 Binarized network
 """
 netin, netinfo = process_input(netin, ['C', 'G', 'TN'])
 trajectory = teneto.trajectory.rdp(netin, level)

 contacts = []
 # Use the trajectory points as threshold
 for n in range(trajectory['index'].shape[0]):
 if sign == 'pos':
 sel = trajectory['trajectory_points'][n][trajectory['trajectory']
 [n][trajectory['trajectory_points'][n]] > 0]
 elif sign == 'neg':
 sel = trajectory['trajectory_points'][n][trajectory['trajectory']
 [n][trajectory['trajectory_points'][n]] < 0]
 else:
 sel = trajectory['trajectory_points']
 i_ind = np.repeat(trajectory['index'][n, 0], len(sel))
 j_ind = np.repeat(trajectory['index'][n, 1], len(sel))
 contacts.append(np.array([i_ind, j_ind, sel]).transpose())
 contacts = np.concatenate(contacts)

 # Create output dictionary
 netout = dict(netinfo)
 netout['contacts'] = contacts
 netout['nettype'] = 'b' + netout['nettype'][1]
 netout['dimord'] = 'node,node,time'
 netout['timetype'] = 'discrete'
 netout['diagonal'] = 0
 # If input is graphlet, output graphlet
 if netinfo['inputtype'] == 'G':
 netout = contact2graphlet(netout)
 else:
 netout.pop('inputtype')

 return netout

[docs]def binarize_magnitude(netin, level, sign='pos'):
 """
 Make binary network based on magnitude thresholding.

 Parameters

 netin : array or dict
 Network (graphlet or contact representation),
 level : float
 Magnitude level threshold at.
 sign : str, default='pos'
 States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa.
 axis : str, default='time'
 Specify which dimension thresholding is applied against. Only 'time' option exists at present.

 Returns

 netout : array or dict (depending on input)
 Binarized network
 """
 netin, netinfo = process_input(netin, ['C', 'G', 'TN'])
 # Predefine
 netout = np.zeros(netinfo['netshape'])

 if sign == 'pos' or sign == 'both':
 netout[netin > level] = 1
 if sign == 'neg' or sign == 'both':
 netout[netin < level] = 1

 # Set diagonal to 0
 netout = set_diagonal(netout, 0)

 # If input is contact, output contact
 if netinfo['inputtype'] == 'C':
 netinfo['nettype'] = 'b' + netinfo['nettype'][1]
 netout = graphlet2contact(netout, netinfo)
 netout.pop('inputtype')
 netout.pop('values')
 netout['diagonal'] = 0

 return netout

[docs]def binarize(netin, threshold_type, threshold_level, outputformat='auto', sign='pos', axis='time'):
 """
 Binarizes a network, returning the network. General wrapper function for different binarization functions.

 Parameters

 netin : array or dict
 Network (graphlet or contact representation),

 threshold_type : str
 What type of thresholds to make binarization. Options: 'rdp', 'percent', 'magnitude'.

 threshold_level : str
 Paramter dependent on threshold type.
 If 'rdp', it is the delta (i.e. error allowed in compression).
 If 'percent', it is the percentage to keep (e.g. 0.1, means keep 10% of signal).
 If 'magnitude', it is the amplitude of signal to keep.

 outputformat : str
 specify what format you want the output in: G, C, TN, or DF. If 'auto', input form is returned.

 sign : str, default='pos'
 States the sign of the thresholding. Can be 'pos', 'neg' or 'both'. If "neg", only negative values are thresholded and vice versa.

 axis : str
 Threshold over specfied axis. Valid for percent and rdp. Can be time or graphlet.

 Returns

 netout : array or dict (depending on input)
 Binarized network

 """
 if outputformat == 'auto':
 outputformat = check_input(netin)
 if threshold_type == 'percent':
 netout = binarize_percent(netin, threshold_level, sign, axis)
 elif threshold_type == 'magnitude':
 netout = binarize_magnitude(netin, threshold_level, sign)
 elif threshold_type == 'rdp':
 netout = binarize_rdp(netin, threshold_level, sign, axis)
 else:
 raise ValueError('Unknown value to parameter: threshold_type.')
 netout = process_input(netout, ['G'], outputformat=outputformat)
 if outputformat == 'G':
 netout = netout[0]
 return netout

[docs]def set_diagonal(tnet, val=0):
 """

 Generally diagonal is set to 0. This function helps set the diagonal across time.

 Parameters

 tnet : array
 temporal network (graphlet)
 val : value to set diagonal to (default 0).

 Returns

 tnet : array
 Graphlet representation with new diagonal

 """
 for t in range(0, tnet.shape[2]):
 np.fill_diagonal(tnet[:, :, t], val)
 return tnet

[docs]def gen_nettype(tnet, weightonly=False):
 r"""

 Attempts to identify what nettype input graphlet tnet is. Diagonal is ignored.

 Paramters

 tnet : array
 temporal network (graphlet)

 Returns

 nettype : str
 \'wu\', \'bu\', \'wd\', or \'bd\'
 """
 if np.array_equal(tnet, tnet.astype(bool)):
 nettype = 'b'
 else:
 nettype = 'w'

 if not weightonly:
 if np.allclose(tnet.transpose(1, 0, 2), tnet):
 direction = 'u'
 else:
 direction = 'd'

 nettype = nettype + direction

 return nettype

[docs]def get_distance_function(requested_metric):
 """
 This function returns a specified distance function.

 Paramters

 requested_metric: str
 Distance function. Can be any function in: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html.

 Returns

 requested_metric : distance function

 """
 distance_options = {
 'braycurtis': distance.braycurtis,
 'canberra': distance.canberra,
 'chebyshev': distance.chebyshev,
 'cityblock': distance.cityblock,
 'correlation': distance.correlation,
 'cosine': distance.cosine,
 'euclidean': distance.euclidean,
 'sqeuclidean': distance.sqeuclidean,
 'dice': distance.dice,
 'hamming': distance.hamming,
 'jaccard': distance.jaccard,
 'kulsinski': distance.kulsinski,
 'matching': distance.matching,
 'rogerstanimoto': distance.rogerstanimoto,
 'russellrao': distance.russellrao,
 'sokalmichener': distance.sokalmichener,
 'sokalsneath': distance.sokalsneath,
 'yule': distance.yule,
 }
 if requested_metric in distance_options:
 return distance_options[requested_metric]
 else:
 raise ValueError('Distance function cannot be found.')

[docs]def clean_community_indexes(communityID):
 """
 Takes input of community assignments. Returns reindexed community assignment by using smallest numbers possible.

 Parameters

 communityID : array-like
 list or array of integers. Output from community detection algorithems.

 Returns

 new_communityID : array
 cleaned list going from 0 to len(np.unique(communityID))-1

 Note

 Behaviour of funciton entails that the lowest community integer in communityID will recieve the lowest integer in new_communityID.

 """
 communityID = np.array(communityID)
 cid_shape = communityID.shape
 if len(cid_shape) > 1:
 communityID = communityID.flatten()
 new_communityID = np.zeros(len(communityID))
 for i, n in enumerate(np.unique(communityID)):
 new_communityID[communityID == n] = i
 if len(cid_shape) > 1:
 new_communityID = new_communityID.reshape(cid_shape)
 return new_communityID

[docs]def multiple_contacts_get_values(C):
 """
 Given an contact representation with repeated contacts, this function removes duplicates and creates a value

 Parameters

 C : dict

 contact representation with multiple repeated contacts.

 Returns

 :C_out: dict

 Contact representation with duplicate contacts removed and the number of duplicates is now in the 'values' field.

 """
 d = collections.OrderedDict()
 for c in C['contacts']:
 ct = tuple(c)
 if ct in d:
 d[ct] += 1
 else:
 d[ct] = 1

 new_contacts = []
 new_values = []
 for (key, value) in d.items():
 new_values.append(value)
 new_contacts.append(key)
 C_out = C
 C_out['contacts'] = new_contacts
 C_out['values'] = new_values
 return C_out

[docs]def is_jsonable(x):
 """
 Check if a dict is jsonable.

 Credit: https://stackoverflow.com/a/53112659
 """
 try:
 json.dumps(x)
 return True
 except (TypeError, OverflowError):
 return False

[docs]def df_to_array(df, netshape, nettype, start_at='min'):
 """
 Returns a numpy array (snapshot representation) from thedataframe contact list

 Parameters:
 df : pandas df
 pandas df with columns, i,j,t.
 netshape : tuple
 network shape, format: (node, time)
 nettype : str
 'wu', 'wd', 'bu', 'bd'
 start_at : str
 'min' or 'zero' or int.
 If min, the 0th time-point in the array is min t value.
 If zero, the 0th time-point in the array is 0.
 If int, the 0th time-point in array starts at int in df.

 Returns:

 tnet : array
 (node,node,time) array for the network
 """
 # Check input if dataframe
 if not isinstance(df, pd.DataFrame):
 raise ValueError('Input must be dataframe')
 # Fix the time indicies
 if isinstance(start_at, int):
 tlen = df['t'].max() + 1 - start_at
 idx_toffset = start_at
 elif start_at == 'zero':
 tlen = df['t'].max() + 1
 idx_toffset = 0
 elif start_at == 'min':
 tlen = netshape[1]
 idx_toffset = df['t'].min()
 # Check if df is non-empty
 if df.shape[0] > 0:
 # Get indices and values
 idx = np.array(list(map(list, df.values)))
 tnet = np.zeros([netshape[0], netshape[0], int(tlen)])
 idx[:, 2] = idx[:, 2] - idx_toffset
 # Checkif binary or weighted.
 # idx.shape[1] == 3, implies binary
 if idx.shape[1] == 3:
 # if undirected, copy the indices from j to i.
 if nettype[-1] == 'u':
 idx = np.vstack([idx, idx[:, [1, 0, 2]]])
 idx = idx.astype(int)
 tnet[idx[:, 0], idx[:, 1], idx[:, 2]] = 1
 # idx.shape[1] == 4, implies weighted
 elif idx.shape[1] == 4:
 if nettype[-1] == 'u':
 idx = np.vstack([idx, idx[:, [1, 0, 2, 3]]])
 weights = idx[:, 3]
 idx = np.array(idx[:, :3], dtype=int)
 tnet[idx[:, 0], idx[:, 1], idx[:, 2]] = weights
 else:
 tnet = np.zeros([netshape[0], netshape[0], int(tlen)])
 return tnet

[docs]def check_distance_funciton_input(distance_func_name, netinfo):
 """
 Function checks distance_func_name, if it is specified as 'default'.
 Then given the type of the network selects a default distance function.

 Parameters

 distance_func_name : str
 distance function name.

 netinfo : dict
 the output of utils.process_input

 Returns

 distance_func_name : str
 distance function name.
 """
 if distance_func_name == 'default' and netinfo['nettype'][0] == 'b':
 print('Default distance funciton specified. As network is binary, using Hamming')
 distance_func_name = 'hamming'
 elif distance_func_name == 'default' and netinfo['nettype'][0] == 'w':
 distance_func_name = 'euclidean'
 print(
 'Default distance funciton specified. '
 'As network is weighted, using Euclidean')

 return distance_func_name

[docs]def get_dimord(measure, calc=None, community=None):
 """
 Get the dimension order of a network measure.

 Parameters

 measure : str
 Name of funciton in teneto.networkmeasures.
 calc : str, default=None
 Calc parameter for the function
 community : bool, default=None
 If not null, then community property is assumed to be believed.

 Returns

 dimord : str
 Dimension order. So "node,node,time" would define the dimensions of the network measure.

 """
 if not calc:
 calc = ''
 else:
 calc = '_' + calc
 if not community:
 community = ''
 else:
 community = 'community'
 if 'community' in calc and 'community' in community:
 community = ''
 if calc == 'community_avg' or calc == 'community_pairs':
 community = ''

 dimord_dict = {
 'temporal_closeness_centrality': 'node',
 'temporal_degree_centrality': 'node',
 'temporal_degree_centralit_avg': 'node',
 'temporal_degree_centrality_time': 'node,time',
 'temporal_efficiency': 'global',
 'temporal_efficiency_global': 'global',
 'temporal_efficiency_node': 'node',
 'temporal_efficiency_to': 'node',
 'sid_global': 'global,time',
 'community_pairs': 'community,community,time',
 'community_avg': 'community,time',
 'sid': 'community,community,time',
 'reachability_latency_global': 'global',
 'reachability_latency': 'global',
 'reachability_latency_node': 'node',
 'fluctuability': 'node',
 'fluctuability_global': 'global',
 'bursty_coeff': 'edge,edge',
 'bursty_coeff_edge': 'edge,edge',
 'bursty_coeff_node': 'node',
 'bursty_coeff_meanEdgePerNode': 'node',
 'volatility_global': 'time',
 }
 if measure + calc + community in dimord_dict:
 return dimord_dict[measure + calc + community]
 else:
 print('WARNINGL: get_dimord() returned unknown dimension labels')
 return 'unknown'

[docs]def get_network_when(tnet, i=None, j=None, t=None, ij=None, logic='and', copy=False, asarray=False, netshape=None, nettype=None):
 r"""
 Returns subset of dataframe that matches index

 Parameters

 tnet : df, array or teneto.TemporalNetwork
 teneto.TemporalNetwork object or pandas dataframe edgelist
 i : list or int
 get nodes in column i (source nodes in directed networks)
 j : list or int
 get nodes in column j (target nodes in directed networks)
 t : list or int
 get edges at this time-points.
 ij : list or int
 get nodes for column i or j (logic and can still persist for t). Cannot be specified along with i or j
 logic : str
 options: \'and\' or \'or\'. If \'and\', functions returns rows that corrspond that match all i,j,t arguments. If \'or\', only has to match one of them
 copy : bool
 default False. If True, returns a copy of the dataframe. Note relevant if hd5 data.
 asarray : bool
 default False. If True, returns the list of edges as a numpy array.

 Returns

 df : pandas dataframe
 Unless asarray are set to true.
 """
 if isinstance(tnet, pd.DataFrame):
 network = tnet
 hdf5 = False
 sparse = True
 elif isinstance(tnet, np.ndarray):
 network = tnet
 sparse = False
 # Can add hdfstore
 elif isinstance(tnet, object):
 network = tnet.network
 hdf5 = tnet.hdf5
 sparse = tnet.sparse
 nettype = tnet.nettype
 netshape = tnet.netshape
 if ij is not None and (i is not None or j is not None):
 raise ValueError('ij cannoed be specifed along with i or j')
 # Make non list inputs a list
 if i is not None and not isinstance(i, list):
 i = [i]
 if j is not None and not isinstance(j, list):
 j = [j]
 if t is not None and not isinstance(t, list):
 t = [t]
 if ij is not None and not isinstance(ij, list):
 ij = [ij]
 if hdf5:
 l = {'or': ' | ', 'and': ' & '}
 if i is not None and j is not None and t is not None:
 isinstr = 'i in ' + str(i) + l[logic] + 'j in ' + \
 str(j) + l[logic] + 't in ' + str(t)
 elif ij is not None and t is not None:
 isinstr = '(i in ' + str(ij) + ' | ' + 'j in ' + \
 str(ij) + ') & ' + 't in ' + str(t)
 elif i is not None and j is not None:
 isinstr = 'i in ' + str(i) + l[logic] + 'j in ' + str(j)
 elif i is not None and t is not None:
 isinstr = 'i in ' + str(i) + l[logic] + 't in ' + str(t)
 elif j is not None and t is not None:
 isinstr = 'j in ' + str(j) + l[logic] + 't in ' + str(t)
 elif i is not None:
 isinstr = 'i in ' + str(i)
 elif j is not None:
 isinstr = 'j in ' + str(j)
 elif t is not None:
 isinstr = 't in ' + str(t)
 elif ij is not None:
 isinstr = 'i in ' + str(ij) + l['or'] + 'j in ' + str(ij)
 df = pd.read_hdf(network, where=isinstr)
 elif not sparse:
 if logic == 'or':
 raise ValueError(
 'OR logic not implemented with array/dense format yet!')
 else:
 if t is None:
 t = np.arange(network.shape[-1])
 if i is None:
 i = np.arange(network.shape[0])
 if j is None:
 j = np.arange(network.shape[0])
 if ij is not None:
 i = ij
 j = np.arange(network.shape[0])
 ind = list(zip(*itertools.product(i, j, t)))
 ind = np.array(ind)
 if ij is None:
 ind2 = np.array(list(zip(*itertools.product(j, i, t))))
 ind = np.hstack([ind, ind2])

 edges = network[ind[0], ind[1], ind[2]]
 ind = ind[:, edges != 0]
 edges = edges[edges != 0]
 df = pd.DataFrame(
 data={'i': ind[0], 'j': ind[1], 't': ind[2], 'weight': edges})
 df['i'] = df['i'].astype(int)
 df['j'] = df['j'].astype(int)
 if nettype[1] == 'u':
 df = df_drop_ij_duplicates(df)

 else:
 l = {'or': operator.__or__, 'and': operator.__and__}
 if i is not None and j is not None and t is not None:
 df = network[l[logic]((network['i'].isin(i)), l[logic]((
 network['j'].isin(j)), (network['t'].isin(t))))]
 elif ij is not None and t is not None:
 df = network[((network['i'].isin(ij)) | l[logic]((
 network['j'].isin(ij)), (network['t'].isin(t))))]
 elif i is not None and j is not None:
 df = network[l[logic]((network['i'].isin(i)),
 (network['j'].isin(j)))]
 elif i is not None and t is not None:
 df = network[l[logic]((network['i'].isin(i)),
 (network['t'].isin(t)))]
 elif j is not None and t is not None:
 df = network[l[logic]((network['j'].isin(j)),
 (network['t'].isin(t)))]
 elif i is not None:
 df = network[network['i'].isin(i)]
 elif j is not None:
 df = network[network['j'].isin(j)]
 elif t is not None:
 df = network[network['t'].isin(t)]
 elif ij is not None:
 df = network[(network['i'].isin(ij)) | (network['j'].isin(ij))]
 if copy:
 df = df.copy()
 if asarray:
 df = df_to_array(df, netshape, nettype)
 return df

[docs]def create_supraadjacency_matrix(tnet, intersliceweight=1):
 """
 Returns a supraadjacency matrix from a temporal network structure

 Parameters

 tnet : teneto.TemporalNetwork
 Temporal network (any network type)
 intersliceweight : int
 Weight that links the same node from adjacent time-points

 Returns

 supranet : dataframe
 Supraadjacency matrix
 """
 tnet = process_input(tnet, ['G', 'C', 'TN'], 'TN', forcesparse=True)
 newnetwork = tnet.network.copy()
 newnetwork['i'] = (tnet.network['i']) + \
 ((tnet.netshape[0]) * (tnet.network['t']))
 newnetwork['j'] = (tnet.network['j']) + \
 ((tnet.netshape[0]) * (tnet.network['t']))
 if 'weight' not in newnetwork.columns:
 newnetwork['weight'] = 1
 newnetwork.drop('t', axis=1, inplace=True)
 timepointconns = pd.DataFrame()
 timepointconns['i'] = np.arange(0, (tnet.N*tnet.T)-tnet.N)
 timepointconns['j'] = np.arange(tnet.N, (tnet.N*tnet.T))
 timepointconns['weight'] = intersliceweight
 supranet = pd.concat([newnetwork, timepointconns]).reset_index(drop=True)
 return supranet

[docs]def df_drop_ij_duplicates(df):
 """
 """
 df['ij'] = list(map(lambda x: tuple(sorted(x)), list(
 zip(*[df['i'].values, df['j'].values]))))
 df.drop_duplicates(['ij', 't'], inplace=True)
 df.reset_index(inplace=True, drop=True)
 df.drop('ij', inplace=True, axis=1)
 return df

[docs]def check_input(netin, rasie_if_undirected=1, conmat=0):
 """

 This function checks that netin input is either graphlet (tnet) or contact (C).

 Parameters

 netin : array or dict
 temporal network, (graphlet or contact).
 rasie_if_undirected : int, default=1.
 Options 1 or 0. Error is raised if not found to be tnet or C
 conmat : int, default=0.
 Options 1 or 0. If 1, input is allowed to be a 2 dimensional connectivity matrix.
 Allows output to be 'M'

 Returns

 inputtype : str
 String indicating input type. 'G','C', 'M' or 'U' (unknown).
 M is special case only allowed when conmat=1 for a 2D connectivity matrix.

 """
 inputis = 'U'
 if isinstance(netin, np.ndarray):
 netShape = netin.shape
 if len(netShape) == 3 and netShape[0] == netShape[1]:
 inputis = 'G'
 elif netShape[0] == netShape[1] and conmat == 1:
 inputis = 'M'

 elif isinstance(netin, dict):
 if 'nettype' in netin and 'contacts' in netin and 'dimord' in netin and 'timetype' in netin:
 if netin['nettype'] in {'bd', 'bu', 'wd', 'wu'} and netin['timetype'] == 'discrete' and netin['dimord'] == 'node,node,time':
 inputis = 'C'

 elif isinstance(netin, object):
 if hasattr(netin, 'network'):
 inputis = 'TN'
 elif isinstance(netin, pd.DataFrame):
 inputis = 'DF'

 if rasie_if_undirected == 1 and inputis == 'U':
 raise ValueError(
 'Input cannot be identified as graphlet or contact representation')

 return inputis

[docs]def process_input(netin, allowedformats, outputformat='G', forcesparse=False):
 """
 Takes input network and checks what the input is.

 Parameters

 netin : array, dict, or teneto.TemporalNetwork
 Network (graphlet, contact or object)
 allowedformats : list or str
 Which format of network objects that are allowed. Options: 'C', 'TN', 'G'.
 outputformat: str, default=G
 Target output format. Options: 'C' or 'G'.

 Returns

 C : dict

 OR

 tnet : array
 Graphlet representation.
 netinfo : dict
 Metainformation about network.

 OR

 tnet : object
 object of teneto.TemporalNetwork class

 """

 netinfo = {}
 if outputformat == 'DF':
 outputformat = 'TN'
 return_df = True
 forcesparse = True
 else:
 return_df = False
 inputtype = check_input(netin)
 if inputtype == 'DF':
 netin = teneto.TemporalNetwork(from_df=netin)
 inputtype = 'TN'
 # Convert TN to tnet representation
 if inputtype == 'TN' and 'TN' in allowedformats and outputformat != 'TN':
 if netin.sparse:
 tnet = netin.df_to_array()
 else:
 tnet = netin.network
 netinfo = {'nettype': netin.nettype, 'netshape': [
 netin.netshape[0], netin.netshape[0], netin.netshape[1]]}
 elif inputtype == 'TN' and 'TN' in allowedformats and outputformat == 'TN':
 if not netin.sparse and forcesparse:
 tnet = teneto.TemporalNetwork(from_array=netin.network, forcesparse=True)
 else:
 tnet = netin
 elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'G':
 tnet = contact2graphlet(netin)
 netinfo = dict(netin)
 netinfo.pop('contacts')
 elif inputtype == 'C' and 'C' in allowedformats and outputformat == 'TN':
 tnet = teneto.TemporalNetwork(from_dict=netin)
 elif inputtype == 'G' and 'G' in allowedformats and outputformat == 'TN':
 tnet = teneto.TemporalNetwork(from_array=netin, forcesparse=forcesparse)
 # Get network type if not set yet
 elif inputtype == 'G' and 'G' in allowedformats:
 netinfo = {}
 netinfo['netshape'] = netin.shape
 netinfo['nettype'] = gen_nettype(netin)
 tnet = netin
 elif inputtype == 'C' and outputformat == 'C':
 pass
 else:
 raise ValueError('Input invalid.')
 if outputformat == 'TN' and isinstance(tnet.network, pd.DataFrame):
 tnet.network['i'] = tnet.network['i'].astype(int)
 tnet.network['j'] = tnet.network['j'].astype(int)
 tnet.network['t'] = tnet.network['t'].astype(int)
 if outputformat == 'C' or outputformat == 'G':
 netinfo['inputtype'] = inputtype
 if inputtype != 'C' and outputformat == 'C':
 return graphlet2contact(tnet, netinfo)
 if outputformat == 'G':
 return tnet, netinfo
 elif outputformat == 'C':
 return netin
 elif outputformat == 'TN':
 if return_df:
 return tnet.network
 else:
 return tnet

rand_binomial

	
rand_binomial(size, prob, netrep='graphlet', nettype='bu', initialize='zero', netinfo=None, randomseed=None)[source]

	Creates a random binary network following a binomial distribution.

	Parameters

	
	size (list or array of length 2 or 3.) – Input [n,t] generates n number of nodes and t number of time points.
Can also be of length 3 (node x node x time) but number of nodes in 3-tuple must be identical.

	prob (int or list/array of length 2.) – If int, this indicates probabability for each node becoming active (equal for all nodes).

If tuple/list of length 2, this indicates different probabilities for edges to become active/inactive.

The first value is “birth rate”. The probability of an absent connection becoming present.

The second value is the “death rate”. This dictates the probability of an active edge remaining present.

example : [40,60] means there is a 40% chance that a 0 will become a 1 and a 60% chance that a 1 stays a 1.

	netrep (str) – network representation: ‘graphlet’ (default) or ‘contact’.

	nettype (str) – Weighted or directed network. String ‘bu’ or ‘bd’ (accepts ‘u’ and ‘d’ as well as b is implicit)

	initialize (float or str) – Input percentage (in decimal) for how many nodes start activated. Alternative specify ‘zero’ (default) for all nodes to start deactivated.

	netinfo (dict) – Dictionary for contact representaiton information.

	randomseed (int) – Set random seed.

	Returns

	net – Generated nework. Format depends on netrep input argument.

	Return type

	array or dict

Notes

The idea of this function is to randomly determine if an edge is present.

Option 2 of the “prob” parameter can be used to create a small autocorrelaiton
or make sure that, once an edge has been present, it never disapears. [rb-1]

Examples

>>> import teneto
>>> import numpy as np
>>> import matplotlib.pyplot as plt

To make the networks a little more complex,
the probabailities of rand_binomial can be set so differently for edges
that have previously been active.
Instead of passing a single integer to p, you can pass a list of 2 values.
The first value is the probabililty for edges that,
at t-1=0 will be active at t (is sometimes called the birth-rate).
The second (optional) value is the probabaility of edges that,
at t-1=1 will be active at t (sometimes called the death-rate).
The latter value helps create an autocorrelation.
Without it, connections will have no autocorrelation.

Example with just birthrate

Below we create a network with 5 nodes and 10 time-points.
Edges have a 25% chance to appear.

>>> np.random.seed(2017) # For reproduceability
>>> N = 5 # Number of nodes
>>> T = 10 # Number of timepoints
>>> birth_rate = 0.25
>>> G = teneto.generatenetwork.rand_binomial([N,N,T], [birth_rate])

We can see that that edges appear randomly:

>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = teneto.plot.slice_plot(G, ax, cmap='Set2')
>>> fig.tight_layout()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/teneto-generatenetwork-rand_binomial-1.png]

Example with birthrate and deathrate

Below we create a network with 5 nodes and 10 time-points.
Edges have a 25% chance to appear and have a 75% chance to remain.

>>> np.random.seed(2017) # For reproduceability
>>> N = 5 # Number of nodes
>>> T = 10 # Number of timepoints
>>> birth_rate = 0.25
>>> death_rate = 0.75
>>> G = teneto.generatenetwork.rand_binomial([N,N,T], [birth_rate, death_rate])

We can see the autocorrelation that this creates by plotting the network:

>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = teneto.plot.slice_plot(G, ax, cmap='Set2')
>>> fig.tight_layout()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/teneto-generatenetwork-rand_binomial-2.png]

References

	rb-1

	Clementi et al (2008) Flooding Time in edge-Markovian Dynamic Graphs PODC
This function was written without reference to this paper.
But this paper discusses a lot of properties of these types of graphs.

rand_poisson

	
rand_poisson(nnodes, ncontacts, lam=1, nettype='bu', netinfo=None, netrep='graphlet')[source]

	Generate a random network where intervals between contacts are distributed by a poisson distribution

	Parameters

	
	nnodes (int) – Number of nodes in networks

	ncontacts (int or list) – Number of expected contacts (i.e. edges). If list, number of contacts for each node.
Any zeros drawn are ignored so returned degree of network can be smaller than ncontacts.

	lam (int or list) – Expectation of interval.

	nettype (str) – ‘bu’ or ‘bd’

	netinfo (dict) – Dictionary of additional information

	netrep (str) – How the output should be.

	ncontacts is a list, so should lam. (If) –

	Returns

	net – Random network with intervals between active edges being Poisson distributed.

	Return type

	array or dict

bursty_coeff

Bursty Coeff

	
bursty_coeff(data, calc='edge', nodes='all', communities=None, threshold_type=None, threshold_level=None, threshold_params=None)[source]

	Calculates the bursty coefficient.[1][2]

	Parameters

	
	data (array, dict) – This is either (1) temporal network input with nettype: ‘bu’, ‘bd’.
(2) dictionary of ICTs (output of intercontacttimes).
(3) temporal network input with nettype: ‘wu’, ‘wd’.
If weighted, you must also specify threshold_type and threshold_value which will make it binary.

	calc (str) – Caclulate the bursty coeff over what.
Options include ‘edge’: calculate B on all ICTs between node i and j.
(Default); ‘node’: caclulate B on all ICTs connected to node i.;
‘communities’: calculate B for each communities (argument communities then required);
‘meanEdgePerNode’: first calculate ICTs between i and j, then take the mean over all j.

	nodes (list or str) – Options: ‘all’: do for all nodes (default) or list of node indexes to calculate.

	communities (array, optional) – None (default) or Nx1 vector of communities assignment. This returns a “centrality” per communities instead of per node.

	threshold_type (str, optional) – If input is weighted. Specify binarizing threshold type. See teneto.utils.binarize

	threshold_level (str, optional) – If input is weighted. Specify binarizing threshold level. See teneto.utils.binarize

	threhsold_params (dict) – If input is weighted. Dictionawy with kwargs for teneto.utils.binarize

	Returns

	B – Bursty coefficienct per (edge or node measure).

	Return type

	array

Notes

The burstiness coefficent, B, is defined in refs [1,2] as:

\[B = {{\sigma_{ICT} - \mu_{ICT}} \over {\sigma_{ICT} + \mu_{ICT}}}\]

Where \(\sigma_{ICT}\) and \(\mu_{ICT}\) are the standard deviation and
mean of the inter-contact times respectively (see teneto.networkmeasures.intercontacttimes)

When B > 0, indicates bursty intercontact times.
When B < 0, indicates periodic/tonic intercontact times.
When B = 0, indicates random.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Now create 2 temporal network of 2 nodes and 60 time points.
The first has periodict edges, repeating every other time-point:

>>> G_periodic = np.zeros([2, 2, 60])
>>> ts_periodic = np.arange(0, 60, 2)
>>> G_periodic[:,:,ts_periodic] = 1

The second has a more bursty pattern of edges:

>>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
>>> G_bursty = np.zeros([2, 2, 60])
>>> G_bursty[:,:,ts_bursty] = 1

The two networks look like this:

(Source code)

Now we call bursty_coeff.

>>> B_periodic = teneto.networkmeasures.bursty_coeff(G_periodic)
>>> B_periodic
array([[nan, -1.],
 [-1., nan]])

Above we can see that between node 0 and 1, B=-1 (the diagonal is nan).
Doing the same for the second example:

>>> B_bursty = teneto.networkmeasures.bursty_coeff(G_bursty)
>>> B_bursty
array([[nan, 0.13311003],
 [0.13311003, nan]])

gives a positive value, indicating the inter-contact times between node 0 and 1 is bursty.

References

	1

	Goh, KI & Barabasi, AL (2008)
Burstiness and Memory in Complex Systems. EPL (Europhysics Letters),
81: 4 [Link [https://arxiv.org/pdf/physics/0610233.pdf]]

	2

	Holme, P & Saramäki J (2012) Temporal networks.
Physics Reports. 519: 3. [Link [https://arxiv.org/pdf/1108.1780.pdf]]
(Discrete formulation used here)

fluctuability

Calculates fluctuatbility

	
fluctuability(netin, calc='overtime')[source]

	Fluctuability of temporal networks.

This is the variation of the network’s edges over time. [fluct-1]
This is the unique number of edges through time divided by the overall
number of edges.

	Parameters

	
	netin (array or dict) – Temporal network input (graphlet or contact)
(nettype: ‘bd’, ‘bu’, ‘wu’, ‘wd’)

	calc (str) – Version of fluctuabiility to calcualte. ‘overtime’

	Returns

	fluct – Fluctuability

	Return type

	array

Notes

Fluctuability quantifies the variability of edges.
Given x number of edges, F is higher when those are repeated edges among
a smaller set of edges and lower when there are distributed across more edges.

\[F = {{\sum_{i,j} H_{i,j}} \over {\sum_{i,j,t} G_{i,j,t}}}\]

where \(H_{i,j}\) is a binary matrix where it is 1 if there is at
least one t such that G_{i,j,t} = 1 (i.e. at least one temporal edge exists).

F is not normalized which makes comparisions of F across very different
networks difficult (could be added).

Examples

This example compares the fluctability of two different networks with the same number of edges.
Below two temporal networks, both with 3 nodes and 3 time-points.
Both get 3 connections.

>>> import teneto
>>> import numpy as np
>>> # Manually specify node (i,j) and temporal (t) indicies.
>>> ind_highF_i = [0,0,1]
>>> ind_highF_j = [1,2,2]
>>> ind_highF_t = [1,2,2]
>>> ind_lowF_i = [0,0,0]
>>> ind_lowF_j = [1,1,1]
>>> ind_lowF_t = [0,1,2]
>>> # Define 2 networks below and set above edges to 1
>>> G_highF = np.zeros([3,3,3])
>>> G_lowF = np.zeros([3,3,3])
>>> G_highF[ind_highF_i,ind_highF_j,ind_highF_t] = 1
>>> G_lowF[ind_lowF_i,ind_lowF_j,ind_lowF_t] = 1

The two different networks look like this:

(Source code)

Now calculate the fluctability of the two networks above.

>>> F_high = teneto.networkmeasures.fluctuability(G_highF)
>>> F_high
1.0
>>> F_low = teneto.networkmeasures.fluctuability(G_lowF)
>>> F_low
0.3333333333333333

Here we see that the network with more unique connections has the higher fluctuability.

	fluct-1

	Thompson et al (2017)
“From static to temporal network theory applications to
functional brain connectivity.” Network Neuroscience, 2:
1. p.69-99
[Link [https://www.mitpressjournals.org/doi/abs/10.1162/NETN_a_00011]]

intercontacttimes

Calculates intercontacttimes

	
intercontacttimes(tnet)[source]

	Calculates the intercontacttimes of each edge in a network.

	Parameters

	tnet (array, dict) – Temporal network (craphlet or contact). Nettype: ‘bu’,

	Returns

	contacts – Intercontact times as numpy array in dictionary. contacts[‘intercontacttimes’]

	Return type

	dict

Notes

The inter-contact times is calculated by the time between consequecutive “active” edges (where active means
that the value is 1 in a binary network).

Examples

This example goes through how inter-contact times are calculated.

>>> import teneto
>>> import numpy as np

Make a network with 2 nodes and 4 time-points with 4 edges spaced out.

>>> G = np.zeros([2,2,10])
>>> edge_on = [1,3,5,9]
>>> G[0,1,edge_on] = 1

The network visualised below make it clear what the inter-contact times are between the two nodes:

(Source code, png, hires.png, pdf)

[image: ../_images/intercontacttime-1.png]

Calculating the inter-contact times of these edges becomes: 2,2,4 between nodes 0 and 1.

>>> ict = teneto.networkmeasures.intercontacttimes(G)

The function returns a dictionary with the icts in the key: intercontacttimes. This is of the size NxN.
So the icts between nodes 0 and 1 are found by:

>>> ict['intercontacttimes'][0,1]
array([2, 2, 4])

local_variation

Networkmeasure: local_variation

	
local_variation(data)[source]

	Calculates the local variaiont of inter-contact times. [LV-1], [LV-2]

	Parameters

	data (array, dict) – This is either (1) temporal network input (graphlet or contact) with nettype: ‘bu’, ‘bd’.
(2) dictionary of ICTs (output of intercontacttimes).

	Returns

	LV – Local variation per edge.

	Return type

	array

Notes

The local variation is like the bursty coefficient and quantifies if a series of inter-contact times are periodic, random or Poisson distributed or bursty.

It is defined as:

\[LV = {3 \over {n-1}}\sum_{i=1}^{n-1}{{{\iota_i - \iota_{i+1}} \over {\iota_i + \iota_{i+1}}}^2}\]

Where \(\iota\) are inter-contact times and i is the index of the inter-contact time (not a node index).
n is the number of events, making n-1 the number of inter-contact times.

The possible range is: \(0 \geq LV \gt 3\).

When periodic, LV=0, Poisson, LV=1 Larger LVs indicate bursty process.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Now create 2 temporal network of 2 nodes and 60 time points. The first has periodict edges, repeating every other time-point:

>>> G_periodic = np.zeros([2, 2, 60])
>>> ts_periodic = np.arange(0, 60, 2)
>>> G_periodic[:,:,ts_periodic] = 1

The second has a more bursty pattern of edges:

>>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
>>> G_bursty = np.zeros([2, 2, 60])
>>> G_bursty[:,:,ts_bursty] = 1

Now we call local variation for each edge.

>>> LV_periodic = teneto.networkmeasures.local_variation(G_periodic)
>>> LV_periodic
array([[nan, 0.],
 [0., nan]])

Above we can see that between node 0 and 1, LV=0 (the diagonal is nan).
This is indicative of a periodic contacts (which is what we defined).
Doing the same for the second example:

>>> LV_bursty = teneto.networkmeasures.local_variation(G_bursty)
>>> LV_bursty
array([[nan, 1.28748748],
 [1.28748748, nan]])

When the value is greater than 1, it indicates a bursty process.

nans are returned if there are no intercontacttimes

References

	LV-1

	Shinomoto et al (2003)
Differences in spiking patterns among cortical neurons.
Neural Computation 15.12
[Link [https://www.mitpressjournals.org/doi/abs/10.1162/089976603322518759]]

	LV-2

	Followed eq., 4.34 in Masuda N & Lambiotte (2016)
A guide to temporal networks. World Scientific.
Series on Complex Networks. Vol 4
[Link [https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001]]

reachability_latency

Reachability latency.

	
reachability_latency(tnet=None, paths=None, rratio=1, calc='global')[source]

	Reachability latency. This is the r-th longest temporal path.

	Parameters

	
	data (array or dict) – Can either be a network (graphlet or contact), binary unidrected only.
Alternative can be a paths dictionary (output of teneto.networkmeasure.shortest_temporal_path)

	rratio (float (default: 1)) – reachability ratio that the latency is calculated in relation to.
Value must be over 0 and up to 1.
1 (default) - all nodes must be reached.
Other values (e.g. .5 imply that 50% of nodes are reached)
This is rounded to the nearest node inter.
E.g. if there are 6 nodes [1,2,3,4,5,6], it will be node 4 (due to round upwards)

	calc (str) – what to calculate. Alternatives: ‘global’ entire network; ‘nodes’: for each node.

	Returns

	reach_lat – Reachability latency

	Return type

	array

Notes

Reachability latency calculates the time it takes for the paths.

	
reachability_ratio(paths)[source]

	

shortest_temporal_path

Functions to calculate the shortest temporal path.

	
seqpath_to_path(pairseq, source)[source]

	

	
shortest_path_from_pairseq(pairseq, source)[source]

	

	
shortest_temporal_path(tnet, steps_per_t='all', i=None, j=None, it=None, minimise='temporal_distance')[source]

	Shortest temporal path

	Parameters

	
	tnet (tnet obj, array or dict) – input network. nettype: bu, bd.

	steps_per_t (int or str) – If str, should be ‘all’.
How many edges can be travelled during a single time-point.

	i (list) – List of node indicies to restrict analysis. These are nodes the paths start from. Default is all nodes.

	j (list) – List of node indicies to restrict analysis. There are nodes the paths end on. Default is all nodes.

	it (None, int, list) – Time points for parts.
Either None (default) which takes all time points,
an integer to indicate which time point to start at,
or a list of time-points that is included in analysis
(including end time-point).

	minimise (str) – Can be “temporal_distance”, returns the path that has the smallest temporal distance.
It is possible there can be a path that is a smaller
topological distance (this option currently not available).

	Returns

	paths – Dataframe consisting of information about all the paths found.

	Return type

	pandas df

Notes

The shortest temporal path calculates the temporal and topological distance there to be a path between nodes.

The argument steps_per_t allows for multiple nodes to be travelled per time-point.

Topological distance is the number of edges that are travelled. Temporal distance is the number of time-points.

This function returns the path that is the shortest temporal distance away.

Examples

Let us start by creating a small network.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import teneto
>>> G = np.zeros([4, 4, 3])
>>> G[0, 1, [0, 2]] = 1
>>> G[0, 3, [2]] = 1
>>> G[1, 2, [1]] = 1
>>> G[2, 3, [1]] = 1

Let us look at this network to see what is there.

>>> fig, ax = plt.subplots(1)
>>> ax = teneto.plot.slice_plot(G, ax, nodelabels=[0,1,2,3], timelabels=[0,1,2], cmap='Set2')
>>> plt.tight_layout()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../_images/shortest_temporal_path-11.png]

Here we can visualize what the shortest paths are.
Let us start by starting at
node 0 we want to find the path to node 3, starting at time 0. To do this we write:

>>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0)
>>> sp['temporal-distance']
0 2
Name: temporal-distance, dtype: int64
>>> sp['topological-distance']
0 3
Name: topological-distance, dtype: int64
>>> sp['path includes']
0 [[0, 1], [1, 2], [2, 3]]
Name: path includes, dtype: object

Here we see that the shortest path takes 3 steps (topological distance of 3) at 2 time points.

It starts by going from node 0 to 1 at t=0, then 1 to 2 and 2 to 3 at t=1.
We can see all the nodes
that were travelled in the “path includes” list.

In the above example, it was possible to traverse multiple edges at a single time-point.
It is possible to restrain that by setting the steps_per_t argument

>>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0, steps_per_t=1)
>>> sp['temporal-distance']
0 3
Name: temporal-distance, dtype: int64
>>> sp['topological-distance']
0 1
Name: topological-distance, dtype: int64
>>> sp['path includes']
0 [[0, 3]]
Name: path includes, dtype: object

Here we see that the path is now only one edge, 0 to 3 at t=2.
The quicker path is no longer possible.

sid

Claculates the segregation-integration difference.

	
sid(tnet, communities, axis=0, calc='overtime', decay=0)[source]

	Segregation integration difference (SID). An estimation of each community or global difference of within versus between community strength.[sid-1]_

	Parameters

	
	tnet (array, dict) – Temporal network input (graphlet or contact). Allowerd nettype: ‘bu’, ‘bd’, ‘wu’, ‘wd’

	communities (array) – a Nx1 vector or NxT array of community assignment.

	axis (int) – Dimension that is returned 0 or 1 (default 0).
Note, only relevant for directed networks.
i.e. if 0, node i has Aijt summed over j and t.
and if 1, node j has Aijt summed over i and t.

	calc (str) – ‘overtime’ returns SID over time (a 1 x community vector) (default);

’community_pairs’ returns a community x community x time matrix, which is the SID for each community pairing;

’community_avg’ (returns a community x time matrix). Which is the normalized average of each community to all other communities.

’community_pairs_norm’ (returns a community x time matrix). Which is the normalized average of each community pair. Each pair is normalized to the average of both communities in the pair.

	decay (int) – if calc = ‘community_pairs’ or ‘community_avg’, then decay is possible where the centrality of
the previous time point is carried over to the next time point but decays
at a value of e^decay such that the temporal centrality measure becomes: $D(t+1) = e^{-decay}D(t) + D(t+1)$.

	Returns

	sid – segregation-integration difference. Format: 2d or 3d numpy array (depending on calc) representing (community,community,time) or (community,time)

	Return type

	array

Notes

SID tries to quantify if there is more segergation or intgration compared to other time-points.
If SID > 0, then there is more segregation than usual. If SID < 0, then there is more integration than usual.

There are three different variants of SID, one is a global measure (calc=’overtime’), the second is a value per community (calc=’community_avg’),
the third is a value for each community-community pairing (calc=’community_pairs’).

First we calculate the temporal strength for each edge. This is calculate by

\[S_{i,t} = \sum_j G_{i,j,t}\]

The pairwise SID, when the network is undirected, is calculated by

\[SID_{A,B,t} = ({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_B}}) S_{A,B,t})\]

Where \(S_{A,t}\) is the average temporal strength at time-point t for community A. \(N_A\) is the number of nodes in community A.

When calculating the SID for a community, it is calculated byL

\[SID_{A,t} = \sum_b^C({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_b}}) S_{A,b,t})\]

Where C is the number of communities.

When calculating the SID globally, it is calculated byL

\[SID_{t} = \sum_a^C\sum_b^C({2 \over {N_a (N_a - 1)}}) S_{A,t} - ({{1} \over {N_a * N_b}}) S_{a,b,t})\]

References

	sid-1

	Fransson et al (2018) Brain network segregation and integration during an epoch-related working memory fMRI experiment.
Neuroimage. 178. [Link [https://www.sciencedirect.com/science/article/pii/S1053811918304476]]

temporal_closeness_centrality

Calculates temporal closeness centrality

	
temporal_closeness_centrality(tnet=None, paths=None)[source]

	Returns temporal closeness centrality per node.

Temporal closeness centrlaity is the sum of a node’s
average temporal paths with all other nodes.

	Parameters

	
	tnet (array, dict, object) – Temporal network input with nettype: ‘bu’, ‘bd’.

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

Note

Only one input (tnet or paths) can be supplied to the function.

	Returns

	temporal closness centrality (nodal measure)

	Return type

	close: array

Notes

Temporal closeness centrality is defined in [Close-1]:

\[\begin{split}C^T_{i} = {{1} \over {N-1}}\sum_j{1\over\\tau_{ij}}\end{split}\]

Where \(\\tau_{ij}\) is the average temporal paths between node i and j.

Note, there are multiple different types of temporal distance measures
that can be used in temporal networks.
If a temporal network is used as input (i.e. not the paths), then teneto
uses shortest_temporal_path() to calculates the shortest paths.
See shortest_temporal_path() for more details.

	Close-1

	Pan, R. K., & Saramäki, J. (2011).
Path lengths, correlations, and centrality in temporal networks.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(1).
[`Link https://doi.org/10.1103/PhysRevE.84.016105`_]

temporal_degree_centrality

Calculates temporal degree centrality

	
temporal_degree_centrality(tnet, axis=0, calc='overtime', communities=None, decay=0, ignorediagonal=True)[source]

	Temporal degree of network.

The sum of all connections each node has through time
(either per timepoint or over the entire temporal sequence).

	Parameters

	
	net (array, dict) – Temporal network input (graphlet or contact). Can have nettype: ‘bu’, ‘bd’, ‘wu’, ‘wd’

	axis (int) – Dimension that is returned 0 or 1 (default 0).
Note, only relevant for directed networks.
i.e. if 0, node i has Aijt summed over j and t.
and if 1, node j has Aijt summed over i and t.

	calc (str) – Can be following alternatives:

’overtime’ : returns a 1 x node vector. Returns the degree/stregnth over all time points.

’pertime’ : returns a node x time array. Returns the degree/strength per time point.

’module_degree_zscore’ : returns the Z-scored within community degree centrality
(communities argument required). This is done for each time-point
i.e. ‘pertime’ returns static degree centrality per time-point.

	ignorediagonal (bool) – if True, diagonal is made to 0.

	communities (array (Nx1)) – Vector of community assignment.
If this is given and calc=’pertime’, then the strength within and
between each communities is returned.
(Note, this is not technically degree centrality).

	decay (int) – if calc = ‘pertime’, then decay is possible where the centrality of
the previous time point is carried over to the next time point but decays
at a value of e^decay such that $D_d(t+1) = e^{-decay}D_d(t) + D(t+1)$.
If decay is 0 then the final D will equal D when calc=’overtime’,
if decay = inf then this will equal calc=’pertime’.

	Returns

	D – temporal degree centrality (nodal measure).
Array is 1D (‘overtime’), 2D (‘pertime’, ‘module_degree_zscore’),
or 3D (‘pertime’ + communities (non-nodal/community measures)).

	Return type

	array

Notes

When the network is weighted, this could also be called “temporal strength”
or “temporal strength centrality”.
This is a simple extension of the static definition.
At times this has been defined slightly differently.
Here we followed the definitions in [Degree-1] or [Degree-2].
There are however many authors prior to this that have used temporal degree centrality.

There are two basic versions of temporal degree centrality implemented:
the average temporal degree centrality (calc='overtime')
and temporal degree centrality (calc='pertime').

When calc='pertime':

\[D_{it} = \sum_j A_{ijt}\]

where A is the multi-layer connectivity matrix of the temporal network.

This entails that \(D_{it}\) is the sum of a node i’s degree/strength at t.
This has also been called the instantaneous degree centrality [Degree-2].

When calc='overtime':

\[D_{i} = \sum_t\sum_j A_{ijt}\]

i.e. \(D_{i}\) is the sum of a node i’s degree/strength over all time points.

There are some additional options which can modify the estimate.
One way is to add a decay term.
This entails that ..math::D_{it}, uses some of the previous time-points estimate.
An exponential decay is used here.

\[D_{it} = e^{-b} D_{i(t-1)} + \sum_j A_{ijt}\]

where b is the deay parameter specified in the function.
This, to my knowledge, was first introdueced by [Degree-2].

References

	Degree-1

	Thompson, et al (2017). From static to temporal network theory:
Applications to functional brain connectivity.
Network Neuroscience, 1(2), 69-99.
[Link [https://www.mitpressjournals.org/doi/full/10.1162/netn_a_00011]]

	Degree-2(1,2,3)

	Masuda, N., & Lambiotte, R. (2016). A Guidance to Temporal Networks.
[Link to book’s publisher [https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001]]

temporal_efficiency

Calculates Temporal Efficiency

	
temporal_efficiency(tnet=None, paths=None, calc='overtime')[source]

	Returns temporal efficiency estimate. BU networks only.

	Parameters

	
	should be either tnet or paths. (Input) –

	data (array or dict) – Temporal network input (graphlet or contact). nettype: ‘bu’, ‘bd’.

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

	calc (str) – Options: ‘overtime’ (default) - measure averages over time and nodes;
‘node’ or ‘node_from’ average over nodes (i) and time. Giving average efficiency for i to j;
‘node_to’ measure average over nodes j and time;

Giving average efficiency using paths to j from i;

	Returns

	E – Global temporal efficiency

	Return type

	array

temporal_part_coef

topological_overlap

Calculates topological overlap

	
topological_overlap(tnet, calc='pertime')[source]

	Topological overlap quantifies the persistency of edges through time.

If two consequtive time-points have similar edges, this becomes high (max 1).
If there is high change, this becomes 0.

References: [topo-1], [topo-2]

	Parameters

	
	tnet (array, dict) – graphlet or contact sequence input. Nettype: ‘bu’.

	calc (str) – which version of topological overlap to calculate:
‘node’ - calculates for each node, averaging over time.
‘pertime’ - (default) calculates for each node per time points.
‘overtime’ - calculates for each node per time points.

	Returns

	topo_overlap – if calc = ‘pertime’, array is (node,time) in size.
if calc = ‘node’, array is (node) in size.
if calc = ‘overtime’, array is (1) in size. The final time point returns as nan.

	Return type

	array

Notes

When edges persist over time, the topological overlap increases.
It can be calculated as a global valu, per node, per node-time.

When calc=’pertime’, then the topological overlap is:

\[TopoOverlap_{i,t} = {\sum_j G_{i,j,t} G_{i,j,t+1}
\over \sqrt{\sum_j G_{i,j,t} \sum_j G_{i,j,t+1}}}\]

When calc=’node’, then the topological overlap is the mean of math:TopoOverlap_{i,t}:

\[AvgTopoOverlap_{i} = {1 \over T-1} \sum_t TopoOverlap_{i,t}\]

where T is the number of time-points.
This is called the average topological overlap.

When calc=’overtime’, the temporal-correlation coefficient is calculated

\[TempCorrCoeff = {1 \over N} \sum_i AvgTopoOverlap_i\]

where N is the number of nodes.

For all the three measures above, the value is between 0 and 1 where 0
entails “all edges changes” and 1 entails “no edges change”.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Then make an temporal network with 3 nodes and 4 time-points.

>>> G = np.zeros([3, 3, 3])
>>> i_ind = np.array([0, 0, 0, 0,])
>>> j_ind = np.array([1, 1, 1, 2,])
>>> t_ind = np.array([0, 1, 2, 2,])
>>> G[i_ind, j_ind, t_ind] = 1
>>> G = G + G.transpose([1,0,2]) # Make symmetric

Now the topological overlap can be calculated:

>>> topo_overlap = teneto.networkmeasures.topological_overlap(G)

This returns topo_overlap which is a (node,time) array.
Looking above at how we defined G,
when t = 0, there is only the edge (0,1).
When t = 1, this edge still remains.
This means topo_overlap should equal 1 for node 0 at t=0 and 0 for node 2:

>>> topo_overlap[0,0]
1.0
>>> topo_overlap[2,0]
0.0

At t=2, there is now also an edge between (0,2),
this means node 0’s topological overlap at t=1 decreases as
its edges have decreased in their persistency at the next time point
(i.e. some change has occured). It equals ca. 0.71

>>> topo_overlap[0,1]
0.7071067811865475

If we want the average topological overlap, we simply add the calc argument to be ‘node’.

>>> avg_topo_overlap = teneto.networkmeasures.topological_overlap(G, calc='node')

Now this is an array with a length of 3 (one per node).

>>> avg_topo_overlap
array([0.85355339, 1. , 0.])

Here we see that node 1 had all its connections persist, node 2 had no connections persisting, and node 0 was in between.

To calculate the temporal correlation coefficient,

>>> temp_corr_coeff = teneto.networkmeasures.topological_overlap(G, calc='overtime')

This produces one value reflecting all of G

>>> temp_corr_coeff
0.617851130197758

References

	topo-1

	Tang et al (2010) Small-world behavior in time-varying graphs.
Phys. Rev. E 81, 055101(R) [arxiv link [https://arxiv.org/pdf/0909.1712.pdf]]

	topo-2

	Nicosia et al (2013) “Graph Metrics for Temporal Networks”
In: Holme P., Saramäki J. (eds) Temporal Networks.
Understanding Complex Systems. Springer.
[arxiv link [https://arxiv.org/pdf/1306.0493.pdf]]

volatility

Function to calculate volatility

	
volatility(tnet, distance_func='default', calc='overtime', communities=None, event_displacement=None)[source]

	Volatility of temporal networks.

Volatility is the average distance between consecutive time points
(difference is caclualted either globally or per edge).

	Parameters

	
	tnet (array or dict) – temporal network input (graphlet or contact). Nettype: ‘bu’,’bd’,’wu’,’wd’

	D (str) – Distance function. Following options available: ‘default’, ‘hamming’, ‘euclidean’.
(Default implies hamming for binary networks, euclidean for weighted).

	calc (str) – Version of volaitility to caclulate. Possibilities include:
‘overtime’ - (default): the average distance of all nodes for each consecutive time point).
‘edge’ - average distance between consecutive time points for each edge).
Takes considerably longer
‘node’ - (i.e. returns the average per node output when calculating volatility per ‘edge’).
‘pertime’ - returns volatility per time point
‘communities’ - returns volatility per communitieswork id (see communities).
Also is returned per time-point and this may be changed in the future
(additional options are then required)
‘event_displacement’ - calculates the volatility from a specified point.
Returns time-series.

	communities (array) – Array of indicies for community (eiter (node) or (node,time) dimensions).

	event_displacement (int) – if calc = event_displacement specify the temporal index.
All other time-points are calculated in relation to this time point.

Notes

Volatility calculates the difference between network snapshots.

\[V_t = D(G_t,G_{t+1})\]

Where D is some distance function (e.g. Hamming distance for binary matrices).

V can be calculated for the entire network (global),
but can also be calculated for individual edges, nodes or given a community vector.

Index of communities are returned “as is” with a shape of:
(max(communities)+1, max(communities)+1).
So if the indexes used are [1,2,3,5], V.shape==(6,6).
The returning V[1,2] will correspond indexes 1 and 2.
And missing index (e.g. here 0 and 4 will be NANs in rows and columns).
If this behaviour is unwanted, call clean_communitiesdexes first.

Examples

Import everything needed.

>>> import teneto
>>> import numpy
>>> np.random.seed(1)
>>> tnet = teneto.TemporalNetwork(nettype='bu')

Here we generate a binary network where edges have a 0.5 change of going “on”, and once on a 0.2 change to go “off”

>>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2))

Calculate the volatility

>>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
0.5555555555555556

If we change the probabilities to instead be certain edges disapeared the time-point after the appeared:

>>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1))

This will make a more volatile network

>>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
0.1111111111111111

We can calculate the volatility per time instead

>>> vol_time = tnet.calc_networkmeasure('volatility', calc='pertime', distance_func='hamming')
>>> len(vol_time)
9
>>> vol_time[0]
0.3333333333333333

Or per node:

>>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func='hamming')
>>> vol_node
array([0.07407407, 0.07407407, 0.07407407])

Here we see the volatility for each node was the same.

It is also possible to pass a community vector.
The function will return volatility both within and between each community.
So the following has two communities:

>>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func='hamming')
>>> vol_com.shape
(2, 2, 9)
>>> vol_com[:,:,0]
array([[nan, 0.5],
 [0.5, 0.]])

And we see that, at time-point 0, there is some volatility between community 0 and 1.
Further, there is no volatility within community 1.
The reason for nan appearing is due to there only being 1 node in community 0.

vol : array

bursty_coeff

Bursty Coeff

	
bursty_coeff(data, calc='edge', nodes='all', communities=None, threshold_type=None, threshold_level=None, threshold_params=None)[source]

	Calculates the bursty coefficient.[1][2]

	Parameters

	
	data (array, dict) – This is either (1) temporal network input with nettype: ‘bu’, ‘bd’.
(2) dictionary of ICTs (output of intercontacttimes).
(3) temporal network input with nettype: ‘wu’, ‘wd’.
If weighted, you must also specify threshold_type and threshold_value which will make it binary.

	calc (str) – Caclulate the bursty coeff over what.
Options include ‘edge’: calculate B on all ICTs between node i and j.
(Default); ‘node’: caclulate B on all ICTs connected to node i.;
‘communities’: calculate B for each communities (argument communities then required);
‘meanEdgePerNode’: first calculate ICTs between i and j, then take the mean over all j.

	nodes (list or str) – Options: ‘all’: do for all nodes (default) or list of node indexes to calculate.

	communities (array, optional) – None (default) or Nx1 vector of communities assignment. This returns a “centrality” per communities instead of per node.

	threshold_type (str, optional) – If input is weighted. Specify binarizing threshold type. See teneto.utils.binarize

	threshold_level (str, optional) – If input is weighted. Specify binarizing threshold level. See teneto.utils.binarize

	threhsold_params (dict) – If input is weighted. Dictionawy with kwargs for teneto.utils.binarize

	Returns

	B – Bursty coefficienct per (edge or node measure).

	Return type

	array

Notes

The burstiness coefficent, B, is defined in refs [1,2] as:

\[B = {{\sigma_{ICT} - \mu_{ICT}} \over {\sigma_{ICT} + \mu_{ICT}}}\]

Where \(\sigma_{ICT}\) and \(\mu_{ICT}\) are the standard deviation and
mean of the inter-contact times respectively (see teneto.networkmeasures.intercontacttimes)

When B > 0, indicates bursty intercontact times.
When B < 0, indicates periodic/tonic intercontact times.
When B = 0, indicates random.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Now create 2 temporal network of 2 nodes and 60 time points.
The first has periodict edges, repeating every other time-point:

>>> G_periodic = np.zeros([2, 2, 60])
>>> ts_periodic = np.arange(0, 60, 2)
>>> G_periodic[:,:,ts_periodic] = 1

The second has a more bursty pattern of edges:

>>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
>>> G_bursty = np.zeros([2, 2, 60])
>>> G_bursty[:,:,ts_bursty] = 1

The two networks look like this:

(Source code)

Now we call bursty_coeff.

>>> B_periodic = teneto.networkmeasures.bursty_coeff(G_periodic)
>>> B_periodic
array([[nan, -1.],
 [-1., nan]])

Above we can see that between node 0 and 1, B=-1 (the diagonal is nan).
Doing the same for the second example:

>>> B_bursty = teneto.networkmeasures.bursty_coeff(G_bursty)
>>> B_bursty
array([[nan, 0.13311003],
 [0.13311003, nan]])

gives a positive value, indicating the inter-contact times between node 0 and 1 is bursty.

References

	1

	Goh, KI & Barabasi, AL (2008)
Burstiness and Memory in Complex Systems. EPL (Europhysics Letters),
81: 4 [Link [https://arxiv.org/pdf/physics/0610233.pdf]]

	2

	Holme, P & Saramäki J (2012) Temporal networks.
Physics Reports. 519: 3. [Link [https://arxiv.org/pdf/1108.1780.pdf]]
(Discrete formulation used here)

fluctuability

Calculates fluctuatbility

	
fluctuability(netin, calc='overtime')[source]

	Fluctuability of temporal networks.

This is the variation of the network’s edges over time. [fluct-1]
This is the unique number of edges through time divided by the overall
number of edges.

	Parameters

	
	netin (array or dict) – Temporal network input (graphlet or contact)
(nettype: ‘bd’, ‘bu’, ‘wu’, ‘wd’)

	calc (str) – Version of fluctuabiility to calcualte. ‘overtime’

	Returns

	fluct – Fluctuability

	Return type

	array

Notes

Fluctuability quantifies the variability of edges.
Given x number of edges, F is higher when those are repeated edges among
a smaller set of edges and lower when there are distributed across more edges.

\[F = {{\sum_{i,j} H_{i,j}} \over {\sum_{i,j,t} G_{i,j,t}}}\]

where \(H_{i,j}\) is a binary matrix where it is 1 if there is at
least one t such that G_{i,j,t} = 1 (i.e. at least one temporal edge exists).

F is not normalized which makes comparisions of F across very different
networks difficult (could be added).

Examples

This example compares the fluctability of two different networks with the same number of edges.
Below two temporal networks, both with 3 nodes and 3 time-points.
Both get 3 connections.

>>> import teneto
>>> import numpy as np
>>> # Manually specify node (i,j) and temporal (t) indicies.
>>> ind_highF_i = [0,0,1]
>>> ind_highF_j = [1,2,2]
>>> ind_highF_t = [1,2,2]
>>> ind_lowF_i = [0,0,0]
>>> ind_lowF_j = [1,1,1]
>>> ind_lowF_t = [0,1,2]
>>> # Define 2 networks below and set above edges to 1
>>> G_highF = np.zeros([3,3,3])
>>> G_lowF = np.zeros([3,3,3])
>>> G_highF[ind_highF_i,ind_highF_j,ind_highF_t] = 1
>>> G_lowF[ind_lowF_i,ind_lowF_j,ind_lowF_t] = 1

The two different networks look like this:

(Source code)

Now calculate the fluctability of the two networks above.

>>> F_high = teneto.networkmeasures.fluctuability(G_highF)
>>> F_high
1.0
>>> F_low = teneto.networkmeasures.fluctuability(G_lowF)
>>> F_low
0.3333333333333333

Here we see that the network with more unique connections has the higher fluctuability.

	fluct-1

	Thompson et al (2017)
“From static to temporal network theory applications to
functional brain connectivity.” Network Neuroscience, 2:
1. p.69-99
[Link [https://www.mitpressjournals.org/doi/abs/10.1162/NETN_a_00011]]

intercontacttimes

Calculates intercontacttimes

	
intercontacttimes(tnet)[source]

	Calculates the intercontacttimes of each edge in a network.

	Parameters

	tnet (array, dict) – Temporal network (craphlet or contact). Nettype: ‘bu’,

	Returns

	contacts – Intercontact times as numpy array in dictionary. contacts[‘intercontacttimes’]

	Return type

	dict

Notes

The inter-contact times is calculated by the time between consequecutive “active” edges (where active means
that the value is 1 in a binary network).

Examples

This example goes through how inter-contact times are calculated.

>>> import teneto
>>> import numpy as np

Make a network with 2 nodes and 4 time-points with 4 edges spaced out.

>>> G = np.zeros([2,2,10])
>>> edge_on = [1,3,5,9]
>>> G[0,1,edge_on] = 1

The network visualised below make it clear what the inter-contact times are between the two nodes:

(Source code, png, hires.png, pdf)

[image: ../../_images/intercontacttime-11.png]

Calculating the inter-contact times of these edges becomes: 2,2,4 between nodes 0 and 1.

>>> ict = teneto.networkmeasures.intercontacttimes(G)

The function returns a dictionary with the icts in the key: intercontacttimes. This is of the size NxN.
So the icts between nodes 0 and 1 are found by:

>>> ict['intercontacttimes'][0,1]
array([2, 2, 4])

local_variation

Networkmeasure: local_variation

	
local_variation(data)[source]

	Calculates the local variaiont of inter-contact times. [LV-1], [LV-2]

	Parameters

	data (array, dict) – This is either (1) temporal network input (graphlet or contact) with nettype: ‘bu’, ‘bd’.
(2) dictionary of ICTs (output of intercontacttimes).

	Returns

	LV – Local variation per edge.

	Return type

	array

Notes

The local variation is like the bursty coefficient and quantifies if a series of inter-contact times are periodic, random or Poisson distributed or bursty.

It is defined as:

\[LV = {3 \over {n-1}}\sum_{i=1}^{n-1}{{{\iota_i - \iota_{i+1}} \over {\iota_i + \iota_{i+1}}}^2}\]

Where \(\iota\) are inter-contact times and i is the index of the inter-contact time (not a node index).
n is the number of events, making n-1 the number of inter-contact times.

The possible range is: \(0 \geq LV \gt 3\).

When periodic, LV=0, Poisson, LV=1 Larger LVs indicate bursty process.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Now create 2 temporal network of 2 nodes and 60 time points. The first has periodict edges, repeating every other time-point:

>>> G_periodic = np.zeros([2, 2, 60])
>>> ts_periodic = np.arange(0, 60, 2)
>>> G_periodic[:,:,ts_periodic] = 1

The second has a more bursty pattern of edges:

>>> ts_bursty = [1, 8, 9, 32, 33, 34, 39, 40, 50, 51, 52, 55]
>>> G_bursty = np.zeros([2, 2, 60])
>>> G_bursty[:,:,ts_bursty] = 1

Now we call local variation for each edge.

>>> LV_periodic = teneto.networkmeasures.local_variation(G_periodic)
>>> LV_periodic
array([[nan, 0.],
 [0., nan]])

Above we can see that between node 0 and 1, LV=0 (the diagonal is nan).
This is indicative of a periodic contacts (which is what we defined).
Doing the same for the second example:

>>> LV_bursty = teneto.networkmeasures.local_variation(G_bursty)
>>> LV_bursty
array([[nan, 1.28748748],
 [1.28748748, nan]])

When the value is greater than 1, it indicates a bursty process.

nans are returned if there are no intercontacttimes

References

	LV-1

	Shinomoto et al (2003)
Differences in spiking patterns among cortical neurons.
Neural Computation 15.12
[Link [https://www.mitpressjournals.org/doi/abs/10.1162/089976603322518759]]

	LV-2

	Followed eq., 4.34 in Masuda N & Lambiotte (2016)
A guide to temporal networks. World Scientific.
Series on Complex Networks. Vol 4
[Link [https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001]]

reachability_latency

Reachability latency.

	
reachability_latency(tnet=None, paths=None, rratio=1, calc='global')[source]

	Reachability latency. This is the r-th longest temporal path.

	Parameters

	
	data (array or dict) – Can either be a network (graphlet or contact), binary unidrected only.
Alternative can be a paths dictionary (output of teneto.networkmeasure.shortest_temporal_path)

	rratio (float (default: 1)) – reachability ratio that the latency is calculated in relation to.
Value must be over 0 and up to 1.
1 (default) - all nodes must be reached.
Other values (e.g. .5 imply that 50% of nodes are reached)
This is rounded to the nearest node inter.
E.g. if there are 6 nodes [1,2,3,4,5,6], it will be node 4 (due to round upwards)

	calc (str) – what to calculate. Alternatives: ‘global’ entire network; ‘nodes’: for each node.

	Returns

	reach_lat – Reachability latency

	Return type

	array

Notes

Reachability latency calculates the time it takes for the paths.

	
reachability_ratio(paths)[source]

	

shortest_temporal_path

Functions to calculate the shortest temporal path.

	
seqpath_to_path(pairseq, source)[source]

	

	
shortest_path_from_pairseq(pairseq, source)[source]

	

	
shortest_temporal_path(tnet, steps_per_t='all', i=None, j=None, it=None, minimise='temporal_distance')[source]

	Shortest temporal path

	Parameters

	
	tnet (tnet obj, array or dict) – input network. nettype: bu, bd.

	steps_per_t (int or str) – If str, should be ‘all’.
How many edges can be travelled during a single time-point.

	i (list) – List of node indicies to restrict analysis. These are nodes the paths start from. Default is all nodes.

	j (list) – List of node indicies to restrict analysis. There are nodes the paths end on. Default is all nodes.

	it (None, int, list) – Time points for parts.
Either None (default) which takes all time points,
an integer to indicate which time point to start at,
or a list of time-points that is included in analysis
(including end time-point).

	minimise (str) – Can be “temporal_distance”, returns the path that has the smallest temporal distance.
It is possible there can be a path that is a smaller
topological distance (this option currently not available).

	Returns

	paths – Dataframe consisting of information about all the paths found.

	Return type

	pandas df

Notes

The shortest temporal path calculates the temporal and topological distance there to be a path between nodes.

The argument steps_per_t allows for multiple nodes to be travelled per time-point.

Topological distance is the number of edges that are travelled. Temporal distance is the number of time-points.

This function returns the path that is the shortest temporal distance away.

Examples

Let us start by creating a small network.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import teneto
>>> G = np.zeros([4, 4, 3])
>>> G[0, 1, [0, 2]] = 1
>>> G[0, 3, [2]] = 1
>>> G[1, 2, [1]] = 1
>>> G[2, 3, [1]] = 1

Let us look at this network to see what is there.

>>> fig, ax = plt.subplots(1)
>>> ax = teneto.plot.slice_plot(G, ax, nodelabels=[0,1,2,3], timelabels=[0,1,2], cmap='Set2')
>>> plt.tight_layout()
>>> fig.show()

(Source code, png, hires.png, pdf)

[image: ../../_images/shortest_temporal_path-1.png]

Here we can visualize what the shortest paths are.
Let us start by starting at
node 0 we want to find the path to node 3, starting at time 0. To do this we write:

>>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0)
>>> sp['temporal-distance']
0 2
Name: temporal-distance, dtype: int64
>>> sp['topological-distance']
0 3
Name: topological-distance, dtype: int64
>>> sp['path includes']
0 [[0, 1], [1, 2], [2, 3]]
Name: path includes, dtype: object

Here we see that the shortest path takes 3 steps (topological distance of 3) at 2 time points.

It starts by going from node 0 to 1 at t=0, then 1 to 2 and 2 to 3 at t=1.
We can see all the nodes
that were travelled in the “path includes” list.

In the above example, it was possible to traverse multiple edges at a single time-point.
It is possible to restrain that by setting the steps_per_t argument

>>> sp = teneto.networkmeasures.shortest_temporal_path(G, i=0, j=3, it=0, steps_per_t=1)
>>> sp['temporal-distance']
0 3
Name: temporal-distance, dtype: int64
>>> sp['topological-distance']
0 1
Name: topological-distance, dtype: int64
>>> sp['path includes']
0 [[0, 3]]
Name: path includes, dtype: object

Here we see that the path is now only one edge, 0 to 3 at t=2.
The quicker path is no longer possible.

sid

Claculates the segregation-integration difference.

	
sid(tnet, communities, axis=0, calc='overtime', decay=0)[source]

	Segregation integration difference (SID). An estimation of each community or global difference of within versus between community strength.[sid-1]_

	Parameters

	
	tnet (array, dict) – Temporal network input (graphlet or contact). Allowerd nettype: ‘bu’, ‘bd’, ‘wu’, ‘wd’

	communities (array) – a Nx1 vector or NxT array of community assignment.

	axis (int) – Dimension that is returned 0 or 1 (default 0).
Note, only relevant for directed networks.
i.e. if 0, node i has Aijt summed over j and t.
and if 1, node j has Aijt summed over i and t.

	calc (str) – ‘overtime’ returns SID over time (a 1 x community vector) (default);

’community_pairs’ returns a community x community x time matrix, which is the SID for each community pairing;

’community_avg’ (returns a community x time matrix). Which is the normalized average of each community to all other communities.

’community_pairs_norm’ (returns a community x time matrix). Which is the normalized average of each community pair. Each pair is normalized to the average of both communities in the pair.

	decay (int) – if calc = ‘community_pairs’ or ‘community_avg’, then decay is possible where the centrality of
the previous time point is carried over to the next time point but decays
at a value of e^decay such that the temporal centrality measure becomes: $D(t+1) = e^{-decay}D(t) + D(t+1)$.

	Returns

	sid – segregation-integration difference. Format: 2d or 3d numpy array (depending on calc) representing (community,community,time) or (community,time)

	Return type

	array

Notes

SID tries to quantify if there is more segergation or intgration compared to other time-points.
If SID > 0, then there is more segregation than usual. If SID < 0, then there is more integration than usual.

There are three different variants of SID, one is a global measure (calc=’overtime’), the second is a value per community (calc=’community_avg’),
the third is a value for each community-community pairing (calc=’community_pairs’).

First we calculate the temporal strength for each edge. This is calculate by

\[S_{i,t} = \sum_j G_{i,j,t}\]

The pairwise SID, when the network is undirected, is calculated by

\[SID_{A,B,t} = ({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_B}}) S_{A,B,t})\]

Where \(S_{A,t}\) is the average temporal strength at time-point t for community A. \(N_A\) is the number of nodes in community A.

When calculating the SID for a community, it is calculated byL

\[SID_{A,t} = \sum_b^C({2 \over {N_A (N_A - 1)}}) S_{A,t} - ({{1} \over {N_A * N_b}}) S_{A,b,t})\]

Where C is the number of communities.

When calculating the SID globally, it is calculated byL

\[SID_{t} = \sum_a^C\sum_b^C({2 \over {N_a (N_a - 1)}}) S_{A,t} - ({{1} \over {N_a * N_b}}) S_{a,b,t})\]

References

	sid-1

	Fransson et al (2018) Brain network segregation and integration during an epoch-related working memory fMRI experiment.
Neuroimage. 178. [Link [https://www.sciencedirect.com/science/article/pii/S1053811918304476]]

temporal_closeness_centrality

Calculates temporal closeness centrality

	
temporal_closeness_centrality(tnet=None, paths=None)[source]

	Returns temporal closeness centrality per node.

Temporal closeness centrlaity is the sum of a node’s
average temporal paths with all other nodes.

	Parameters

	
	tnet (array, dict, object) – Temporal network input with nettype: ‘bu’, ‘bd’.

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

Note

Only one input (tnet or paths) can be supplied to the function.

	Returns

	temporal closness centrality (nodal measure)

	Return type

	close: array

Notes

Temporal closeness centrality is defined in [Close-1]:

\[\begin{split}C^T_{i} = {{1} \over {N-1}}\sum_j{1\over\\tau_{ij}}\end{split}\]

Where \(\\tau_{ij}\) is the average temporal paths between node i and j.

Note, there are multiple different types of temporal distance measures
that can be used in temporal networks.
If a temporal network is used as input (i.e. not the paths), then teneto
uses shortest_temporal_path() to calculates the shortest paths.
See shortest_temporal_path() for more details.

	Close-1

	Pan, R. K., & Saramäki, J. (2011).
Path lengths, correlations, and centrality in temporal networks.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(1).
[`Link https://doi.org/10.1103/PhysRevE.84.016105`_]

temporal_degree_centrality

Calculates temporal degree centrality

	
temporal_degree_centrality(tnet, axis=0, calc='overtime', communities=None, decay=0, ignorediagonal=True)[source]

	Temporal degree of network.

The sum of all connections each node has through time
(either per timepoint or over the entire temporal sequence).

	Parameters

	
	net (array, dict) – Temporal network input (graphlet or contact). Can have nettype: ‘bu’, ‘bd’, ‘wu’, ‘wd’

	axis (int) – Dimension that is returned 0 or 1 (default 0).
Note, only relevant for directed networks.
i.e. if 0, node i has Aijt summed over j and t.
and if 1, node j has Aijt summed over i and t.

	calc (str) – Can be following alternatives:

’overtime’ : returns a 1 x node vector. Returns the degree/stregnth over all time points.

’pertime’ : returns a node x time array. Returns the degree/strength per time point.

’module_degree_zscore’ : returns the Z-scored within community degree centrality
(communities argument required). This is done for each time-point
i.e. ‘pertime’ returns static degree centrality per time-point.

	ignorediagonal (bool) – if True, diagonal is made to 0.

	communities (array (Nx1)) – Vector of community assignment.
If this is given and calc=’pertime’, then the strength within and
between each communities is returned.
(Note, this is not technically degree centrality).

	decay (int) – if calc = ‘pertime’, then decay is possible where the centrality of
the previous time point is carried over to the next time point but decays
at a value of e^decay such that $D_d(t+1) = e^{-decay}D_d(t) + D(t+1)$.
If decay is 0 then the final D will equal D when calc=’overtime’,
if decay = inf then this will equal calc=’pertime’.

	Returns

	D – temporal degree centrality (nodal measure).
Array is 1D (‘overtime’), 2D (‘pertime’, ‘module_degree_zscore’),
or 3D (‘pertime’ + communities (non-nodal/community measures)).

	Return type

	array

Notes

When the network is weighted, this could also be called “temporal strength”
or “temporal strength centrality”.
This is a simple extension of the static definition.
At times this has been defined slightly differently.
Here we followed the definitions in [Degree-1] or [Degree-2].
There are however many authors prior to this that have used temporal degree centrality.

There are two basic versions of temporal degree centrality implemented:
the average temporal degree centrality (calc='overtime')
and temporal degree centrality (calc='pertime').

When calc='pertime':

\[D_{it} = \sum_j A_{ijt}\]

where A is the multi-layer connectivity matrix of the temporal network.

This entails that \(D_{it}\) is the sum of a node i’s degree/strength at t.
This has also been called the instantaneous degree centrality [Degree-2].

When calc='overtime':

\[D_{i} = \sum_t\sum_j A_{ijt}\]

i.e. \(D_{i}\) is the sum of a node i’s degree/strength over all time points.

There are some additional options which can modify the estimate.
One way is to add a decay term.
This entails that ..math::D_{it}, uses some of the previous time-points estimate.
An exponential decay is used here.

\[D_{it} = e^{-b} D_{i(t-1)} + \sum_j A_{ijt}\]

where b is the deay parameter specified in the function.
This, to my knowledge, was first introdueced by [Degree-2].

References

	Degree-1

	Thompson, et al (2017). From static to temporal network theory:
Applications to functional brain connectivity.
Network Neuroscience, 1(2), 69-99.
[Link [https://www.mitpressjournals.org/doi/full/10.1162/netn_a_00011]]

	Degree-2(1,2,3)

	Masuda, N., & Lambiotte, R. (2016). A Guidance to Temporal Networks.
[Link to book’s publisher [https://www.worldscientific.com/doi/abs/10.1142/9781786341150_0001]]

temporal_efficiency

Calculates Temporal Efficiency

	
temporal_efficiency(tnet=None, paths=None, calc='overtime')[source]

	Returns temporal efficiency estimate. BU networks only.

	Parameters

	
	should be either tnet or paths. (Input) –

	data (array or dict) – Temporal network input (graphlet or contact). nettype: ‘bu’, ‘bd’.

	paths (pandas dataframe) – Output of TenetoBIDS.networkmeasure.shortest_temporal_paths

	calc (str) – Options: ‘overtime’ (default) - measure averages over time and nodes;
‘node’ or ‘node_from’ average over nodes (i) and time. Giving average efficiency for i to j;
‘node_to’ measure average over nodes j and time;

Giving average efficiency using paths to j from i;

	Returns

	E – Global temporal efficiency

	Return type

	array

temporal_part_coef

topological_overlap

Calculates topological overlap

	
topological_overlap(tnet, calc='pertime')[source]

	Topological overlap quantifies the persistency of edges through time.

If two consequtive time-points have similar edges, this becomes high (max 1).
If there is high change, this becomes 0.

References: [topo-1], [topo-2]

	Parameters

	
	tnet (array, dict) – graphlet or contact sequence input. Nettype: ‘bu’.

	calc (str) – which version of topological overlap to calculate:
‘node’ - calculates for each node, averaging over time.
‘pertime’ - (default) calculates for each node per time points.
‘overtime’ - calculates for each node per time points.

	Returns

	topo_overlap – if calc = ‘pertime’, array is (node,time) in size.
if calc = ‘node’, array is (node) in size.
if calc = ‘overtime’, array is (1) in size. The final time point returns as nan.

	Return type

	array

Notes

When edges persist over time, the topological overlap increases.
It can be calculated as a global valu, per node, per node-time.

When calc=’pertime’, then the topological overlap is:

\[TopoOverlap_{i,t} = {\sum_j G_{i,j,t} G_{i,j,t+1}
\over \sqrt{\sum_j G_{i,j,t} \sum_j G_{i,j,t+1}}}\]

When calc=’node’, then the topological overlap is the mean of math:TopoOverlap_{i,t}:

\[AvgTopoOverlap_{i} = {1 \over T-1} \sum_t TopoOverlap_{i,t}\]

where T is the number of time-points.
This is called the average topological overlap.

When calc=’overtime’, the temporal-correlation coefficient is calculated

\[TempCorrCoeff = {1 \over N} \sum_i AvgTopoOverlap_i\]

where N is the number of nodes.

For all the three measures above, the value is between 0 and 1 where 0
entails “all edges changes” and 1 entails “no edges change”.

Examples

First import all necessary packages

>>> import teneto
>>> import numpy as np

Then make an temporal network with 3 nodes and 4 time-points.

>>> G = np.zeros([3, 3, 3])
>>> i_ind = np.array([0, 0, 0, 0,])
>>> j_ind = np.array([1, 1, 1, 2,])
>>> t_ind = np.array([0, 1, 2, 2,])
>>> G[i_ind, j_ind, t_ind] = 1
>>> G = G + G.transpose([1,0,2]) # Make symmetric

Now the topological overlap can be calculated:

>>> topo_overlap = teneto.networkmeasures.topological_overlap(G)

This returns topo_overlap which is a (node,time) array.
Looking above at how we defined G,
when t = 0, there is only the edge (0,1).
When t = 1, this edge still remains.
This means topo_overlap should equal 1 for node 0 at t=0 and 0 for node 2:

>>> topo_overlap[0,0]
1.0
>>> topo_overlap[2,0]
0.0

At t=2, there is now also an edge between (0,2),
this means node 0’s topological overlap at t=1 decreases as
its edges have decreased in their persistency at the next time point
(i.e. some change has occured). It equals ca. 0.71

>>> topo_overlap[0,1]
0.7071067811865475

If we want the average topological overlap, we simply add the calc argument to be ‘node’.

>>> avg_topo_overlap = teneto.networkmeasures.topological_overlap(G, calc='node')

Now this is an array with a length of 3 (one per node).

>>> avg_topo_overlap
array([0.85355339, 1. , 0.])

Here we see that node 1 had all its connections persist, node 2 had no connections persisting, and node 0 was in between.

To calculate the temporal correlation coefficient,

>>> temp_corr_coeff = teneto.networkmeasures.topological_overlap(G, calc='overtime')

This produces one value reflecting all of G

>>> temp_corr_coeff
0.617851130197758

References

	topo-1

	Tang et al (2010) Small-world behavior in time-varying graphs.
Phys. Rev. E 81, 055101(R) [arxiv link [https://arxiv.org/pdf/0909.1712.pdf]]

	topo-2

	Nicosia et al (2013) “Graph Metrics for Temporal Networks”
In: Holme P., Saramäki J. (eds) Temporal Networks.
Understanding Complex Systems. Springer.
[arxiv link [https://arxiv.org/pdf/1306.0493.pdf]]

volatility

Function to calculate volatility

	
volatility(tnet, distance_func='default', calc='overtime', communities=None, event_displacement=None)[source]

	Volatility of temporal networks.

Volatility is the average distance between consecutive time points
(difference is caclualted either globally or per edge).

	Parameters

	
	tnet (array or dict) – temporal network input (graphlet or contact). Nettype: ‘bu’,’bd’,’wu’,’wd’

	D (str) – Distance function. Following options available: ‘default’, ‘hamming’, ‘euclidean’.
(Default implies hamming for binary networks, euclidean for weighted).

	calc (str) – Version of volaitility to caclulate. Possibilities include:
‘overtime’ - (default): the average distance of all nodes for each consecutive time point).
‘edge’ - average distance between consecutive time points for each edge).
Takes considerably longer
‘node’ - (i.e. returns the average per node output when calculating volatility per ‘edge’).
‘pertime’ - returns volatility per time point
‘communities’ - returns volatility per communitieswork id (see communities).
Also is returned per time-point and this may be changed in the future
(additional options are then required)
‘event_displacement’ - calculates the volatility from a specified point.
Returns time-series.

	communities (array) – Array of indicies for community (eiter (node) or (node,time) dimensions).

	event_displacement (int) – if calc = event_displacement specify the temporal index.
All other time-points are calculated in relation to this time point.

Notes

Volatility calculates the difference between network snapshots.

\[V_t = D(G_t,G_{t+1})\]

Where D is some distance function (e.g. Hamming distance for binary matrices).

V can be calculated for the entire network (global),
but can also be calculated for individual edges, nodes or given a community vector.

Index of communities are returned “as is” with a shape of:
(max(communities)+1, max(communities)+1).
So if the indexes used are [1,2,3,5], V.shape==(6,6).
The returning V[1,2] will correspond indexes 1 and 2.
And missing index (e.g. here 0 and 4 will be NANs in rows and columns).
If this behaviour is unwanted, call clean_communitiesdexes first.

Examples

Import everything needed.

>>> import teneto
>>> import numpy
>>> np.random.seed(1)
>>> tnet = teneto.TemporalNetwork(nettype='bu')

Here we generate a binary network where edges have a 0.5 change of going “on”, and once on a 0.2 change to go “off”

>>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2))

Calculate the volatility

>>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
0.5555555555555556

If we change the probabilities to instead be certain edges disapeared the time-point after the appeared:

>>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1))

This will make a more volatile network

>>> tnet.calc_networkmeasure('volatility', distance_func='hamming')
0.1111111111111111

We can calculate the volatility per time instead

>>> vol_time = tnet.calc_networkmeasure('volatility', calc='pertime', distance_func='hamming')
>>> len(vol_time)
9
>>> vol_time[0]
0.3333333333333333

Or per node:

>>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func='hamming')
>>> vol_node
array([0.07407407, 0.07407407, 0.07407407])

Here we see the volatility for each node was the same.

It is also possible to pass a community vector.
The function will return volatility both within and between each community.
So the following has two communities:

>>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func='hamming')
>>> vol_com.shape
(2, 2, 9)
>>> vol_com[:,:,0]
array([[nan, 0.5],
 [0.5, 0.]])

And we see that, at time-point 0, there is some volatility between community 0 and 1.
Further, there is no volatility within community 1.
The reason for nan appearing is due to there only being 1 node in community 0.

vol : array

Generating temporal networks

Generating a matrix from teneto.generatenetwork

Instead of manually specifying networks, teneto provides tools to generate networks. Currently there are two methods of generating networks: using binomial or poisson distributions. Both of these etworks are binary. In this tutorial we focus on the binomial distribution.

In the teneto.generatenetwork.rand_binomial each connection is determined based on a binomial distribution. It takes two necessary inputs: size of network and probability of connection. Additional inputs such as whether the output format and if the network should be directed or undirected. Each edge is determined independently of all others (i.e. if p=0.5 each each has a 50% chance of being possible).

>>> import teneto
>>> import numpy as np
>>> np.random.seed(2017) # For reproducibility
>>> # Number of nodes
>>> N = 3
>>> # Number of timepoints
>>> T = 5
>>> # Probability of edge activation
>>> p = 0.5
>>> C1 = teneto.generatenetwork.rand_binomial([N,N,T],p,'contact','bu')

It is also possible to add meta information for contact representation which then carries through to plotting functions. This is done by giving a dictionary to the _netinfo_ argument.

>>> np.random.seed(2017) # For reproducibility
>>> # Number of nodes
>>> N = 3
>>> # Number of timepoints
>>> T = 5
>>> # Probability of edge activation
>>> p = 0.5
>>> # Specify network information
>>> cfg={}
>>> cfg['timeunit']='Seconds'
>>> cfg['Fs']=0.2
>>> #Generate network
>>> C2 = teneto.generatenetwork.rand_binomial([N,N,T],p,'contact','bu',netinfo=cfg)

Let’s visualize the networks that we have just visualized.

>>> # Create matplotlib figure
>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = plt.subplot(1,1,1)
>>> ax = teneto.plot.graphlet_stack_plot(C2,ax,q=10,cmap='Reds')

Which produces the following figure:

[image: ../_images/gennet_example1.png]
To make the networks a little more complex, the probabilities for active and inactive edges can be different. Instead of passing a single integer to \(p\), you can pass a list of 2 values. The first value is the probability at t-1=0 an edge be active at \(t\) (sometimes called the birth-rate). The second value is the probability of edges who, at \(t - 1 = 1\) will be active at \(t\) (sometimes called the death-rate). The latter value helps create an autocorrelation.

>>> np.random.seed(2017) # For reproducibility
>>> # Number of nodes
>>> N = 5
>>> # Number of timepoints
>>> T = 10
>>> # Probability of edge activation
>>> p0to1 = .25
>>> p1to1 = 0.75
>>> # Specify network information
>>> cfg={}
>>> cfg['timeunit']='Seconds'
>>> cfg['Fs']=0.5
>>> #Generate network
>>> C3 = teneto.generatenetwork.rand_binomial([N,N,T],[p0to1,p1to1],'contact','bu',netinfo=cfg,)

Displaying the network

>>> import matplotlib.pyplot as plt
>>> # Create matplotlib figure
>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = teneto.plot.slice_plot(C3,ax,cmap='Greys')
>>> fig.tight_layout()

Which produces the following figure:

[image: ../_images/gennet_example2.png]
This flexibility allows for the creation of different types of networks. For example, let us say that, once connected, a connection cannot be lost.
Then p1to1=1 and edges can only increase.

As can be seen in the plot above, at the first time-point, all edges are 0. This may not be what we want. An alternative is to change the argument _initialize_ which is the percentage of nodes that should be active at the first time-point. This is set in the example below.

>>> np.random.seed(2017) # For reproduceability
>>> # Number of nodes
>>> N = 10
>>> # Number of timepoints
>>> T = 20
>>> # Probability of edge activation
>>> p0to1 = .1
>>> p1to1 = 1
>>> # Percentage of nodes active at time index 0.
>>> initialize = 0.1
>>> # Specify network information
>>> cfg={}
>>> cfg['timeunit']='Days'
>>> cfg['Fs']=1
>>> #Generate network
>>> C4 = teneto.generatenetwork.rand_binomial([N,N,T],[p0to1,p1to1],'contact','bu',netinfo=cfg,initialize=initialize)

Displaying the network

>>> # Create matplotlib figure
>>> fig,ax = plt.subplots(figsize=(15,4))
>>> ax = teneto.plot.graphlet_stack_plot(C4,ax,q=10,cmap='Greys')
>>> fig.tight_layout()

Which produces the following figure:

[image: ../_images/gennet_example3.png]
If we instead set p0to1=1 we will make sure that a node never has two consecutive activations.

Plotting temporal networks

Plotting in teneto

Being able to view the network information through time is very useful. Teneto offers two solutions that help convey an overview of temporal networks. These functions are clearer when the networks are smaller.

For the example, first we’ll start by generating a network to visualize.

>>> import teneto
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> #Set colourmap
>>> plt.rcParams['image.cmap'] = 'autumn'

Then we need to generate a binary undirected network to work with.
Here we have 5 nodes over 10 time points
(see the tutorial/generating_a_random_network example for more information)

>>> np.random.seed(2017) # For reproduceability
>>> # Number of nodes
>>> N = 5
>>> # Number of timepoints
>>> T = 10
>>> # Probability of edge activation
>>> p0to1 = 0.2
>>> p1to1 = .9
>>> # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007
>>> cfg={}
>>> cfg['Fs'] = 1
>>> cfg['timeunit'] = 'Years'
>>> cfg['nodelabels'] = ['Ashley','Blake','Casey','Dylan','Elliot']
>>> cfg['t0'] = 2007 #First year in network
>>> #Generate network
>>> C = teneto.generatenetwork.rand_binomial([N,N,T],[p0to1, p1to1],'contact','bu',netinfo=cfg)

Slice plots

Plotting tools are found in teneto.plot module. Slice_plot’s line up all the nodes for a time point into a “slice”. Each edge is plotted with a curved line.

>>> fig,ax = plt.subplots()
>>> ax = plt.subplot(1,1,1)
>>> ax = teneto.plot.slice_plot(C,ax)

This will produce the following figure:

[image: ../_images/contact_example.png]

Graphlet stack plots

Graphlet stack plots takes the temporal network input and automatically scales each 2D adjacency matrix, creating a 3D effect, and stacks them up in a time series.

With only the generated network above (C), we then create a matplotlib figure and then call graphlet_stack_plot.

>>> # Create matplotlib figure
>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = plt.subplot(1,1,1)
>>> colorMap = 'Greys'
>>> # Only new parameter is "q" which stands for figure quality
>>> ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap=colorMap)

The argument q stands for figure quality. A higher number exports a higher figure. While the figure can be exported as a svg (and figure labels can be changed), the graphlet stack itself is a bitmap due to how it is created.

This will produce the following figure:

[image: ../_images/graphlet_example.png]

Customizing graphlet_stack_plot

There are some possibilities to modify graphlet_stack_plot after ones own style instead of the default plot.

Below we see an example of customization by: removing the grids between edge values, changing the border colour to a grey and making the border much larger. This isn’t pretty, but shows what can be done.

There are still a couple of restrictions. At the moment some border must be present. As too are the rounded rectangles border.

>>> # Create matplotlib figure
>>> fig,ax = plt.subplots(figsize=(10,3))
>>> ax = plt.subplot(1,1,1)
>>> colorMap = 'seismic'
>>> # Call graphlet_stack_plot adding only specified parameters.
>>> ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap=colorMap,gridcolor='none',borderwidth=12,bordercolor=[.3,.3,.3])

This will produce the following figure:

[image: ../_images/graphlet_example2.png]

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_images/workflow-1.png
create_temporalnetwork

generatenetwork

degree

_images/workflow-2.png
create_temporalnetwork

generatenetwork_lowprob] {generatenetwork_highprob)

degree_lowprob. degree_highprob

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Teneto Docs

_images/gennet_example2.png
10

2.5

3.0 35
Time (Seconds)

4.0

45

5.0

55

_images/gennet_example3.png
10

1

Time (Days)

12

13

14

15

16

17

18

19

20

_images/contact_example.png
Elliot ——

Dylan —— G- OO0
Casey-— O O OO
Bake - @ | @ | @

Ashley - ®

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Time (Years)

_images/gennet_example1.png
02

0.4

0.6 0.8

Time (Seconds)

10

_images/inheritance-11c7200fa74d5c266336ca622357708486e61271.png
TenetoWorkflow

TenetoBIDS

TemporalNetwork

_images/intercontacttime-1.png
i

5 6
Time.

7

1

_images/graphlet_example.png
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Time (Years)

_images/graphlet_example2.png
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Time (Years)

_images/intercontacttime-11.png
i

5 6
Time.

7

1

_images/networkrepresentation-1.png
-

0 2005 2016 2007 2018
Time (years)

_images/shortest_temporal_path-1.png
AT

_images/teneto-generatenetwork-rand_binomial-2.png

_images/teneto-networkmeasures-intercontacttimes-1.png
i

5 6
Time.

7

1

_images/shortest_temporal_path-11.png
AT

_images/teneto-generatenetwork-rand_binomial-1.png
Time.

1

_images/teneto-plot-graphlet_stack_plot-1.png
2007 2008 2009 2010 2011 2012 2013 2004 2015 2006

Time (Years)

_images/teneto-plot-slice_plot-1.png
ot -
Oytan -
Casey -
Bake
sehiey -

2007 2008 2000 2010 2011 2012 013 2014 2015 2016
Time.

_images/teneto-networkmeasures-shortest_temporal_path-1.png
AT

_images/teneto-plot-circle_plot-1.png

_images/tutorial_tctc_11_0.png
Original data

Community: 0

-7

e

Community: 1

Community: 2

=

Community: 3

Community: 4

_images/tutorial_tctc_18_0.png
Original data

Community: 0

e

Community: 1

_images/tutorial_tctc_20_0.png
amplitude.

Original data

Community: 0

_images/tutorial_tctc_15_0.png
Original data

Community: 0

e

Community: 1

Community: 2

7

LXK

Community: 3

Community: 4

_images/tutorial_tctc_17_0.png
Original data

Community: 0

-

e

Community: 1

Community: 2

Community: 3

Community: 4

— N\

~

Community: 5

Community: 6

N

Community: 7

_images/what_is_tnt-1.png
Static network

Temporal network

Bliot

Dylan

Casey -0

Biake

hshiey.

[
[

Time (Event)

_images/tutorial_tctc_22_0.png
Original data

Community: 0

e~

e

Community: 1

Community: 2

=

—~

Community: 3

Community: 4

B

_images/tutorial_tctc_4_1.png

